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Abstract In this paper triangular norms and conorms are introduced and suitable defini-
tions and properties are mentioned. Then, aggregation functions and their basic properties
are defined. The averaging aggregation operators are defined and some interesting proper-
ties are derived. Moreover, we have extended concave and quasiconcave functions intro-
ducing t-quasiconcave and upper and lower starshaped functions. The main results con-
cerning aggregation of generalized concave functions are presented and some extremal
properties of compromise decisions by adopting aggregation operators are derived and dis-
cussed.

1 Introduction

When solving practical optimization problems, we often wish to replace large scale prob-
lems by smaller scale problems, or multi-criteria problems by single-criteria problems. How-
ever, aggregation problems appear in so many different forms and such a wide range of disci-
plines and applications that necessarily a general theory of aggregation cannot be very deep.
As a consequence the practically relevant parts of aggregation theory are usually domain
specific, see Ijiri (1971), Malinvaud (1993).
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In this paper we are interested in aggregation of a finite number of real numbers into a
single number and its use in designing new classes of generalized convex functions that may
be useful in optimization theory and decision analysis.

In decision making, values to be aggregated are typically preference or satisfaction de-
grees restricted to the unit interval [0,1]. Here, we consider a decision problem in X, i.e., the
problem to find a “best” decision in the set of feasible decisions X with respect to several
criteria functions. We study the “optimal” or “compromise” decision x∗ ∈ X maximizing
some aggregation of given criteria. The criteria considered here are functions defined on the
set X of feasible decisions with the values in the unit interval [0,1]. Such functions can be
interpreted as membership functions of fuzzy subsets of X, or, utility functions on X. Our
approach here is, however, general and can be adopted to a more general class of decision
problems, see also Dubois et al. (2000), Fodor and Roubens (1994), Klement et al. (2000).

The set X of feasible decisions is supposed to be a convex subset or a generalized convex
subset of the n-dimensional Euclidean space Rn. The main subject of our interest is to derive
extremal properties of compromise decisions by adopting aggregation operators, and gen-
eralized concave criteria. Hence, we extend the well known results for max-min decisions.
Our results will be derived for the n-dimensional Euclidean space Rn with n ≥ 1. However,
some results can be derived only for R1, denoted here simply by R.

The paper is structured as follows. In Sect. 2 triangular norms and conorms are introduced
and suitable definitions and properties are mentioned. Then, aggregation functions and their
basic properties are defined, averaging aggregation operators are defined and some interest-
ing properties are derived. In Sects. 3 and 4 we extend concave and quasiconcave functions
introducing t-quasiconcave and starshaped functions. In Sect. 5, the main results concerning
aggregation of generalized concave functions are presented and discussed, in Sect. 6, some
extremal properties of compromise decisions by adopting aggregation operators are derived.

2 Aggregation functions and operators

Once some values on the unit interval [0,1] are given, we can aggregate them and obtain a
new value belonging again to [0,1]. This can be done in many different ways according to
what is expected from such mappings. They are usually called aggregation functions, and
they can be roughly divided into three classes, each possessing very distinct behavior and
semantics, see Grabisch et al. (2009).

Functions of the first class, conjunctive type functions, combine values as if they were
related by a logical “and” operation. In other words, the result of combination is high if
all individual values are high. Triangular norms are typical examples of conjunctive type
aggregations.

On the other hand, disjunctive type functions combine values as an “or” operation, so that
the result of aggregation is high if some of the values are high. The most common examples
of disjunctive type functions are triangular conorms.

Between conjunctive and disjunctive type functions, there is room for the third class of
aggregation functions, which are often called averaging type functions. They are usually lo-
cated between minimum and maximum, which are the bounds of the t-norms and t-conorms.
Averaging type functions have the property that low values of some criteria can be compen-
sated by high values of the other criteria functions.

There are of course other operators which do not fit into any of these classes. The pro-
cess of aggregating several real valued functions defined on a common domain, into a real
valued function on the same domain is often realized by combining (for each point of the
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common domain) the values of the individual functions under consideration into a single
representative number, the value of the resulting function. Because of the natural correspon-
dence between real intervals [a, b] and [0,1], many results for functions whose variables are
restricted to a common interval [a, b] can be transformed into results for variables restricted
to [0,1], and vice versa. Consequently, for a large variety of problems, the discussion about
aggregation functions is sufficiently general when restricted to functions with variables in
[0,1].

2.1 Triangular norms and conorms

To have a sensible aggregation, the functions performing the process of aggregation should
have some reasonable properties; for example, symmetry, increasing monotonicity, strict in-
creasing monotonicity, associativity, continuity, and others, see Klement et al. (2000). Some
of these requirements are satisfied by the following functions.

Definition 2.1 A function T : [0,1]2 → [0,1] that is commutative, associative, nondecreas-
ing in each variable and satisfies the boundary condition T (a,1) = a for every a in [0,1], is
called the triangular norm or t-norm.

The most popular triangular norms are the minimum t-norm TM , product t-norm TP ,
Lukasiewicz t-norm TL, and drastic product TD defined by

TM(a, b) = min{a, b}, (2.1)

TP (a, b) = a.b, (2.2)

TL(a, b) = max{0, a + b − 1}, (2.3)

TD(a, b) =
{

min{a, b} if max{a, b} = 1,

0 otherwise.
(2.4)

A class of functions closely related to the class of t-norms is the class of functions from
[0,1]2 into [0,1] defined as follows.

Definition 2.2 A function S : [0,1]2 → [0,1] that is commutative, associative, nondecreas-
ing in every variable and satisfies the boundary condition S(a,0) = a for all a ∈ [0,1], is
called the triangular conorm or t-conorm.

The functions SM , SP , SL and SD defined for a, b ∈ [0,1] by

SM(a, b) = max{a, b}, (2.5)

SP (a, b) = a + b − a · b, (2.6)

SL(a, b) = min{1, a + b}, (2.7)

SD(a, b) =
{

max{a, b} if min{a, b} = 0,

1 otherwise.
(2.8)

are typical t-conorms. Often, SM , SP , SL and SD are called the maximum, probabilistic sum,
bounded sum and drastic sum, respectively.
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It can easily be verified that, for every triangular norm T , the function T ∗ from [0,1]2

into [0,1] defined for all a, b ∈ [0,1] by

T ∗(a, b) = 1 − T (1 − a,1 − b) (2.9)

is a t-conorm. The converse statement is also true. Namely, if S is a t-conorm, then the
function S∗ : [0,1]2 → [0,1] defined for all a, b ∈ [0,1] by

S∗(a, b) = 1 − S(1 − a,1 − b) (2.10)

is a t-norm. The t-conorm T ∗ and t-norm S∗ are called dual to the t-norm T and t-conorm
S, respectively. It can easily be verified that

T ∗
M = SM, T ∗

P = SP , T ∗
L = SL, T ∗

D = SD.

Using the commutativity and associativity of t-norms, one can extend them (and analo-
gously also t-conorms) to more than two arguments by the formula

T n(x1, x2, . . . , xn) = T 2(T n−1(x1, x2, . . . , xn−1), xn), (2.11)

where T 2(x1, x2) = T (x1, x2).
A triangular norm T is called strictly monotone if it is strictly increasing in the sense that

T (a, b) < T (a′, b) whenever a, a′, b ∈ [0,1] and a < a′, b > 0.
A triangular norm T ′ dominates a triangular norm T if

T ′(T (a, b), T (c, d)) ≥ T (T ′(a, c), T ′(b, d)) (2.12)

for all a, b, c, d ∈ [0,1].
From (2.11) and (2.12), it follows that a triangular norm T ′ dominates a triangular norm

T if and only if

T ′(T (x1, y1), . . . , T (xm, ym)) ≥ T (T ′(x1, . . . , xm), T ′(y1, . . . , ym)) (2.13)

for m > 1, and all x1, . . . , xm, y1, . . . , ym ∈ [0,1].

2.2 Aggregation functions and operators

There exist other useful functions, often called aggregation functions, that are related to or
generalizing t-norms or t-conorms. The following is a specialization to our framework of
the definition of aggregation functions from the recent book by Grabisch et al. (2009).

Definition 2.3 Let n be an integer, n > 1, an aggregation function in [0,1]n is a function A :
[0,1]n → [0,1] that is nondecreasing in each variable and fulfills the boundary conditions

inf
x∈[0,1]n

A(x) = 0 and sup
x∈[0,1]n

A(x) = 1. (2.14)

Definition 2.4 An aggregation function A in [0,1]n is called

(a) conjunctive if

A(x1, . . . , xn) ≤ TM(x1, . . . , xn), (2.15)
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(b) disjunctive if

SM(x1, . . . , xn) ≤ A(x1, . . . , xn), (2.16)

(c) compensatory if

TM(x1, . . . , xn) ≤ A(x1, . . . , xn) ≤ SM(x1, . . . , xn), (2.17)

(d) commutative if

A(xπ(1), . . . , xπ(n)) = A(x1, . . . , xn), (2.18)

for every permutation π of {1, . . . , n},
(e) idempotent if

A(x,x, . . . , x) = x, (2.19)

for all x.
Notice that (2.14) holds if and only if

A(0, . . . ,0) = 0 and A(1, . . . ,1) = 1. (2.20)

Some properties can only be defined when combining different dimensions of aggregat-
ing functions. That is why we introduce the concept of aggregation operator. By an aggre-
gation operator we understand a sequence of aggregation functions. More formally:

Definition 2.5 An aggregation operator is a sequence A = {An}∞
n=1 of aggregation func-

tions where

A1(x) = x for each x ∈ [0,1].

Depending on the field of application, other mathematical properties can be requested
from aggregation operators, see e.g. Grabisch et al. (2009).

Definition 2.6 An aggregation operator A = {An}∞
n=1 is called

(a) commutative, idempotent, continuous, compensatory or strictly monotone if, for each
n ≥ 2, the aggregation function An is commutative, idempotent, continuous, compen-
satory or strictly monotone, respectively;

(b) strict if An is strictly monotone and continuous for all n ≥ 2;
(c) associative if, for all m,n ≥ 2 and all tuples (x1, x2, . . . , xm) ∈ [0,1]m and (y1, y2, . . . ,

yn) ∈ [0,1]n, we have

Am+n(x1, x2, . . . , xm, y1, y2, . . . , yn)

= A2(Am(x1, x2, . . . , xm),An(y1, y2, . . . , yn));
(d) decomposable if, for all m,n ≥ 2 and all tuples (x1, . . . , xm) ∈ [0,1]m and (y1, . . . , yn) ∈

[0,1]n, we have

Am+n(x1, . . . , xm, y1, . . . , yn)

= Am+n(Am(x1, . . . , xm), . . . ,Am(x1, . . . , xm), y1, . . . , yn) (2.21)

where, in the right side, the term Am(x1, x2, . . . , xm) occurs m times.
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We have seen that the commutativity and associativity make it possible to extend t-
norms and t-conorms to n-ary operations, with n > 2. Therefore, a sequence {T n}∞

n=1 where
T 1(x) = x for each x ∈ [0,1] defines an aggregation operator, and T n are its aggregation
functions. For the sake of simplicity, when there is no danger of a confusion, we call this
aggregation operator also a t-norm and denote it by the original symbol T . In other words,
when speaking about a t-norm T or t-conorm S as an aggregation operator, we always have
in mind the corresponding sequence {T n}∞

n=1 or {Sn}∞
n=1, respectively. For the same reason,

we shall sometimes omit the index n in the aggregation function An. Considering this con-
vention in the following propositions, we obtain some characterizations of the previously
defined properties.

Every t-norm and every t-conorm is a commutative and associative aggregation operator.

Proposition 2.1 Let A = {An}∞
n=1 be an aggregation operator and let ψ : [0,1] → [0,1]

be a strictly increasing or strictly decreasing bijection. Then Aψ = {Aψ
n }∞

n=1 defined
by Aψ

n (x1, x2, . . . , xn) = ψ−1(An(ψ(x1), . . . ,ψ(xn))) for all n = 1,2, . . . and all tuples
(x1, x2, . . . , xn) ∈ [0,1]n, is an aggregation operator.

Continuity of aggregation operators play an important role in applications. The following
proposition shows that for continuity of commutative aggregation operators it is sufficient
that they are continuous in a single variable only. The proof of the following proposition can
be found in Ramík and Vlach (2001).

Proposition 2.2 Let A = {An}∞
n=1 be a commutative aggregation operator. Then A is con-

tinuous if and only if, for each n = 1,2, . . . , the aggregation function An is continuous in its
first variable x1.

2.3 Averaging aggregation operators

Perhaps, even more popular aggregation operators than triangular norms and co-norms are
the means: the arithmetic mean M = {Mn}∞

n=1, the geometric mean G = {Gn}∞
n=1, the har-

monic mean H = {Hn}∞
n=1 and the root-power mean M(α) = {M(α)

n }∞
n=1, given by

Mn(x1, x2, . . . , xn) = 1

n

n∑
i=1

xi, (2.22)

Gn(x1, x2, . . . , xn) =
(

n∏
i=1

xi

)1/n

, (2.23)

Hn(x1, x2, . . . , xn) = n∑n

i=1
1
xi

, (2.24)

M(α)
n (x1, x2, . . . , xn) =

(
1

n

n∑
i=1

xα
i

)1/α

, α 	= 0. (2.25)

All these operators are commutative, idempotent and continuous, none of them is associa-
tive. The root-power mean operators M(α), α > 0, are strict, whereas G and H are not strict.
Notice that M = M(1) and H = M(−1). It can be verified that

M(0)
n (x1, x2, . . . , xn) = lim

α→0
M(α)(x1, x2, . . . , xn) =

(
n∏

i=1

xi

)1/n

,
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M(−∞)
n (x1, x2, . . . , xn) = lim

α→−∞ M(α)(x1, x2, . . . , xn)

= min{xi | i = 1, . . . , n},
M(+∞)

n (x1, x2, . . . , xn) = lim
α→+∞ M(α)(x1, x2, . . . , xn)

= max{xi | i = 1, . . . , n}.
The next proposition says that the operators (2.22)–(2.25) are all compensatory. It says

even more, namely, that the class of idempotent aggregation operators is exactly the same as
the class of compensatory operators. The proof of this result is elementary and can be found
in Fodor and Roubens (1994).

Proposition 2.3 An aggregation operator is idempotent if and only if it is compensatory.

The following proposition clarifies the relationships between some other properties in-
troduced in Definition 2.6. The proof can be found also in Fodor and Roubens (1994).

Proposition 2.4 Let A = {An}∞
n=1 be a continuous and commutative aggregation operator.

Then A is compensatory, strict and decomposable, if and only if for all x1, x2, . . . , xn ∈ [0,1]

An(x1, x2, . . . , xn) = ψ−1

(
1

n

n∑
i=1

ψ(xi)

)
, (2.26)

with a continuous strictly monotone function ψ : [0,1] → [0,1].

The aggregation operator (2.26) is called the generalized mean, or quasi-arithmetic
mean. It covers a wide range of popular means including those of (2.22)–(2.25). The min-
imum TM and the maximum SM are the only associative and decomposable compensatory
aggregation operators.

3 Quasiconcave and starshaped functions

In this section and the following sections we shall deal with our main problem, that is,
the aggregation of generalized quasiconcave functions. First, we will look for sufficient
conditions that secure some properties of quasiconcavity. For a more detailed treatment of
concavity and some of its generalizations, see Avriel et al. (1988) or Ramík and Vlach
(2001).

The concepts of concavity, convexity, quasiconcavity, quasiconvexity and quasimono-
tonicity of a function f : Rn → R can be introduced in several ways. The following defi-
nitions are suitable for our purpose. From now on, the set X is supposed to be a nonempty
subset of Rn, we shall denote it X ⊆ Rn.

Definition 3.1 Let X ⊆ Rn, a function f : X → R is called

(a) concave on X (CA) if

f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y) (3.1)

for every x, y ∈ X and every λ ∈ (0,1) with λx + (1 − λ)y ∈ X;
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(b) strictly concave on X if

f (λx + (1 − λ)y) > λf (x) + (1 − λ)f (y) (3.2)

for every x, y ∈ X, x 	= y and every λ ∈ (0,1) with λx + (1 − λ)y ∈ X;
(c) semistrictly concave on X if f is concave on X and (3.2) holds for every x, y ∈ X and

every λ ∈ (0,1) with λx + (1 − λ)y ∈ X such that f (x) 	= f (y).
A function f : X → R is called convex, strictly convex on X, semi-strictly convex on X

if −f is concave on X, strictly concave on X, semistrictly concave on X, respectively.

Definition 3.2 Let X ⊆ Rn, a function f : X → R is called

(a) quasiconcave on X (QCA) if

f (λx + (1 − λ)y) ≥ min{f (x), f (y)}

for every x, y ∈ X and every λ ∈ (0,1) with λx + (1 − λ)y ∈ X

(resp. quasiconvex on X if −f is quasiconcave on X);
(b) strictly quasiconcave on X if

f (λx + (1 − λ)y) > min{f (x), f (y)} (3.3)

for every x, y ∈ X, x 	= y and every λ ∈ (0,1) with λx + (1 − λ)y ∈ X

(resp. strictly quasiconvex on X if −f is strictly quasiconcave on X);
(c) semistrictly quasiconcave on X if f is quasiconcave on X and (3.3) holds for every

x, y ∈ X and every λ ∈ (0,1) with λx + (1 − λ)y ∈ X such that f (x) 	= f (y).
A function f : X → R is called quasiconvex on X, strictly quasiconvex on X,
semistrictly quasiconvex on X if −f is quasiconcave on X, strictly quasiconcave on
X, semistrictly quasiconcave on X, respectively.

Notice that in Definitions 3.1 and 3.2 the set X is not required to be convex. If in the above
definitions the set X is convex, then we obtain the usual definition of (strictly) quasiconcave
and (strictly) quasiconvex functions. Observe that if a function is (strictly) concave and
(strictly) convex on X, then it is (strictly) quasiconcave and (strictly) quasiconvex on X,
respectively, but not vice-versa.

In Definitions 3.1 and 3.2 we introduced the concepts of semistrictly CA functions and
semistrictly QCA functions, respectively. The former (the latter) is stronger than the concept
of a CA function (QCA function), and weaker than the concept of a strictly CA function
(strictly QCA function).

Let X be a convex subset of Rn and let f be a real valued function on X. By the upper-
level set of f at a real number α, we understand the set U(f,α) defined by U(f,α) =
{x ∈ X : f (x) ≥ α}. Analogously, the set L(f,α) = {x ∈ X : f (x) ≤ α} will be called the
lower-level set of f at α.

Further on, we shall investigate some properties of local and global extrema of quasicon-
cave functions.

Proposition 3.1 Let X ⊆ Rn be a convex set. Let f : X → R be semistrictly quasiconcave
on X. If x∗ ∈ X is a local maximizer of f over X, then x∗ is a global maximizer of f over X.
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Fig. 1 Starshaped set

Proof Set α = f (x̄). Then the upper-level set U(f,α) is convex. Since x̄ ∈ X is a local
maximizer, there exists an open ball B with the center at x̄ ∈ X, such that f (x) ≤ f (x̄) for
all x ∈ X ∩ B .

Suppose on contrary that x̄ ∈ X is not a global maximizer. Then there exists v ∈ X,
x̄ 	= v, such that f (x̄) < f (v). It follows that v ∈ U(f,α) and consequently there exists
a segment S(x̄, v) = λx + (1 − λ)v connecting x̄ and v, such that S(x̄, v) ⊂ U(f,α), set
z = λ′x + (1 − λ′)v ∈ X ∩ B for some sufficiently small λ′ ∈ (0,1). As f is semistrictly
quasiconcave on X, f (λ′x + (1 − λ′)v) = f (z) > f (x̄). Since z ∈ X ∩ B , we have f (z) ≤
f (x̄), a contradiction. �

It is well known that a function is quasiconcave on X if and only if all its upper-level
sets are convex sets. The following generalization of concave functions is based on this
observation generalizing the concept of convex (upper-level) set by introducing starshaped
sets.

Definition 3.3 Let X ⊆ Rn and let y be a point in X. The set X is starshaped from y if, for
every x ∈ X, the convex hull of the set {x, y} is included in X. The set of all points y ∈ X

such that X is starshaped from y is called the kernel of X and it is denoted by Ker(X). The
set X is said to be a starshaped set if Ker(X) is nonempty, or if X is empty.

Clearly, X is starshaped if there is a point y ∈ X such that X is starshaped from y. From
the geometric viewpoint, if there exists a point y in X such that for every other point x

from X the whole linear segment connecting the points x and y belongs to X, then X is
starshaped, see Fig. 1. Evidently, every convex set is starshaped. For a convex set X, we
have Ker(X) = X. Moreover, in the 1-dimensional space R, convex sets and starshaped sets
coincide.

To introduce starshaped functions, we begin with the following, well known, characteri-
zation of quasiconcave and quasiconvex functions by upper-level sets and lower-level sets.

Proposition 3.2 Let X ⊆ Rn be a convex set. A function f : X → R is quasiconcave on X

if and only if all its upper-level sets are convex subsets of Rn. Likewise, f is quasiconvex on
X if and only if all its lower-level sets are convex subsets of Rn.

Proposition 3.2 suggest a way of generalization of quasiconcave and quasiconvex func-
tions. Replacing the requirement of convexity of upper-level sets and lower-level sets in
Proposition 3.2 by the requirement of starshapedness, we obtain the following generaliza-
tion of quasiconcave and quasiconvex functions.

Definition 3.4 Let X be a starshaped subset of Rn. A function f : X → R is called

(a) upper-starshaped on X if its upper-level sets U(f,α) are starshaped subsets of Rn for
all α ∈ R;
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Fig. 2 Starshaped function which is not quasiconcave

(b) lower-starshaped on X if its lower-level sets L(f,α) are starshaped subsets of Rn for
all α ∈ R;

(c) monotone-starshaped on X if it is both lower-starshaped and upper-starshaped on X.

It is obvious that if a function f : X → Rn is upper-starshaped on X, then the func-
tion −f is lower-starshaped on X, and vice-versa. From the fact that each convex set is
starshaped it follows that each quasiconcave (quasiconvex) function is upper-starshaped
(lower-starshaped), but not vice versa, see Fig. 2. Moreover, each quasimonotone function
is monotone-starshaped. Evidently, the classes of quasiconcave (quasiconvex) functions and
upper-starshaped (lower-starshaped) functions coincide on Rn, n = 1, as convex sets and
starshaped sets on R coincide. For n > 1, this is, however, not true.

Further on, we shall investigate some properties of local and global maxima of upper-
starshaped functions on X.

Proposition 3.3 Let X ⊆ Rn be a starshaped set. Let f : X → R be upper-starshaped on X.
If x∗ ∈ X is a strict local maximizer of f over X, then x∗ is a strict global maximizer of f

over X.

Proof Set α = f (x̄). Then the upper-level set U(f,α) is upper-starshaped. Since x̄ ∈ X

is a strict local maximizer, there exists an open ball B with the center at x̄ ∈ X, such that
f (x) < f (x̄) for all x ∈ X ∩ B .

Suppose on contrary that x̄ ∈ X is not a strict global maximizer. Then there exists v ∈ X,
x̄ 	= v, such that f (x̄) < f (v). It follows that v ∈ U(f,α) and consequently there exists
a “broken” segment S(x̄, v, λ) connecting x̄ and v, such that S(x̄, v, λ) ⊂ U(f,α). Then
z = S(x̄, v, λ′) ∈ X ∩ B for some sufficiently small λ′ ∈ (0,1) and f (S(x̄, v, λ′)) = f (z) ≥
f (x̄). Since z ∈ X ∩ B , we have f (z) ≤ f (x̄), a contradiction. �

4 T -quasiconcave functions

In contrast to the previous section, we now restrict our attention to functions on Rn whose
range is included in the unit interval [0,1] of real numbers. Such functions can be inter-
preted as membership functions of fuzzy subsets of Rn, important in fuzzy optimization and
decision making. In this context they are called fuzzy criteria. We therefore use several terms
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and some notation of fuzzy set theory. However, it should be pointed out that such functions
arise in more contexts.

In what follows, the Greek letter μ, sometimes with an index, denotes a function that
maps Rn into the interval [0,1]. The core of μ, denoted by Core(μ) is the set of those
points in Rn at which μ(x) = 1. If the Core of μ is nonempty, then μ is said to be upper-
normalized; if the core of 1 − μ is nonempty, then μ is said to be lower-normalized; and if
μ is both upper-normalized and lower-normalized, then it is called normalized.

We have introduced quasiconcave (semi)strictly quasiconcave, quasiconvex and (semi)
strictly quasiconvex functions in Definition 3.1. First, we extend these notions by using
triangular norms and conorms.

Definition 4.1 Let X ⊆ Rn be a convex set, T be a triangular norm. A function μ : Rn →
[0,1] is called

(a) T -quasiconcave on X if

μ(λx + (1 − λy)) ≥ T (μ(x),μ(y)) (4.1)

for every x, y ∈ X, x 	= y and λ ∈ (0,1);
(b) strictly T -quasiconcave on X if

μ(λx + (1 − λ)y) > T (μ(x),μ(y)) (4.2)

for every x, y ∈ X, x 	= y and λ ∈ (0,1);
(c) semistrictly T -quasiconcave on X if (4.1) holds for every x, y ∈ X, x 	= y and λ ∈ (0,1)

and (4.2) holds for every x, y ∈ X and λ ∈ (0,1) such that μ(x) 	= μ(y);
Similarly, we can define (strictly, semistrictly) S-quasiconvex on X, (strictly, semi-
strictly) (T , S)-quasimonotone on X.

Obviously, the class of quasiconcave functions that map Rn into [0,1] according to Def-
inition 3.2 is exactly the class of TM -quasiconcave functions according to Definition 4.1.
Moreover, since the minimum triangular norm TM is the maximal t-norm, and the drastic
product TD is the minimal t-norm, we have the following consequence of Definition 4.1.

Proposition 4.1 Let X ⊆ Rn be a convex set, μ be a function from Rn into [0,1], and T be
a triangular norm.

(a) If μ is (strictly, semistrictly) quasiconcave function on X, then μ is (strictly, semistrictly)
T -quasiconcave on X, respectively.

(b) If μ is (strictly, semistrictly) T -quasiconcave function on X, then μ is also (strictly,
semistrictly) TD-quasiconcave on X.

It is easy to show the following relationship between T -quasiconcave and S-quasiconvex
functions.

Proposition 4.2 Let X ⊆ Rn be a convex set, let T be a triangular norm and let μ :
Rn → [0,1] be (strictly, semistrictly) T -quasiconcave on X. Then μ∗ = 1 − μ is (strictly,
semistrictly) T ∗-quasiconvex on X, where T ∗ is the t-conorm dual to T .

Proof Clearly, the claim follows directly from Definition 4.1 and the relation T ∗(a, b) =
1 − T (1 − a,1 − b). �
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It is also easy to show that there exist T -quasiconcave functions that are not quasiconcave
(see Ramík and Vlach 2001), and there exist strictly or semistrictly T -quasiconcave func-
tions that are not strictly or semistrictly quasiconcave. Nevertheless, in the one-dimensional
Euclidean space R, the following proposition is of some interest.

Proposition 4.3 Let X ⊆ R be a convex set, let T be a triangular norm, and let μ : R →
[0,1] be such that μ(x̄) = 1 for some x̄ ∈ X. If μ is (strictly, semistrictly) T -quasiconcave
on X, then μ is (strictly, semistrictly) quasiconcave on X.

Proof We prove only the part concerning T -quasiconcavity. The part concerning strict
(semistrict) T -quasiconcavity can be verified analogously. Let λ be in [0,1] and let x and
y in X. Without loss of generality we assume that x ≤ y. Thus x ≤ λx + (1 − λ)y. If
λx + (1 − λ)y ≤ x̄, then there exists α ∈ [0,1] such that

λx + (1 − λ)y = αx + (1 − α)x̄.

By T -quasiconcavity of μ on X and properties of triangular norms, we have

μ(αx + (1 − α)x̄) ≥ T (μ(x),μ(x̄)) = T (μ(x),1) = μ(x).

Since μ(λx + (1 − λ)y) = μ(αx + (1 − α)x̄) and μ(x) ≥ min{μ(x),μ(y)}, we have

μ(λx + (1 − λ)y) ≥ min{μ(x),μ(y)}.
It remains to show that this inequality holds also in the case that x̄ < λx + (1 − λ)y. Since
λx + (1 − λ)y ≤ y, we can use an analogous argument. There exists β ∈ [0,1] such that
λx + (1 − λ)y = βx̄ + (1 − β)y and consequently

μ(λx + (1 − λ)y) = μ(βx̄ + (1 − β)y) ≥ T (μ(x̄),μ(y))

= T (1,μ(y)) = T (μ(y),1) = μ(y)

≥ min{μ(x),μ(y)}. �

Analogous propositions are valid for S-quasiconvex functions and for (T ,S)-quasimo-
notone functions.

5 Aggregation of fuzzy criteria

In what follows we shall investigate the properties of aggregations of fuzzy criteria given by
membership functions of fuzzy sets in Rn by the help of a t-norm or aggregation function.
Particularly, we deal with some sufficient conditions such that the aggregations of fuzzy
criteria will become T -quasiconcave or upper-starshaped. The generalized concavity prop-
erties are very important in optimization or decision making as they secure that any local
maximizer is also a global one. That property will be investigated in the next section.

Proposition 5.1 Let X ⊆ Rn be a convex set, let T and T ′ be t-norms and let μi : Rn →
[0,1], i = 1,2, . . . ,m, be T -quasiconcave on X. If T ′ dominates T , then Am : Rn → [0,1]
defined by Am(x) = T ′(μ1(x), . . . ,μm(x)) is T -quasiconcave on X.
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Proof As μi , i = 1,2, . . . ,m are T -quasiconcave on X, we have μi(λx + (1 − λ)y) ≥
T (μi(x),μi(y)) for every λ ∈ [0,1] and x, y ∈ X. By monotonicity of T ′, we obtain

Am(λx + (1 − λ)y) = T ′(μ1(λx + (1 − λ)y), . . . ,μm(λx + (1 − λ)y))

≥ T ′(T (μ1(x),μ1(y)), . . . , T (μm(x),μm(y))). (5.1)

Using the fact that T ′ dominates T , we obtain

T ′(T (μ1(x),μ1(y)), . . . , T (μm(x),μm(y)))

≥ T (T ′(μ1(x), . . . ,μm(x)), T ′(μ1(y), . . . ,μm(y))) = T (ϕ(x),ϕ(y)). (5.2)

Combining (5.1) and (5.2), we obtain the required result. �

Corollary 5.1 Let X ⊆ Rn be a convex set, let T be a t-norm, and let μi : Rn → [0,1], i =
1,2, . . . ,m, be T -quasiconcave on X. Then Aj : Rn → [0,1], j = 1,2, defined by A1(x) =
T (μ1(x), . . . ,μm(x)) and A2(x) = TM(μ1(x), . . . ,μm(x)), are also T -quasiconcave on X.

Proof The proof follows from the preceding proposition and the evident fact that T domi-
nates T and TM dominates every t-norm T . �

The following results are also of some interest, for proofs, see Ramík and Vlach (2001).
Notice that any quasiconcave function on X is TD-quasiconcave on X and also upper-
starshaped on X.

Proposition 5.2 Let X ⊆ Rn be a convex set, let T be a t-norm and let μi : Rn → [0,1],
i = 1,2, . . . ,m, be T -quasiconcave on X such that

Core(μ1) ∩ · · · ∩ Core(μm) 	= ∅.

Let Am : [0,1]m → [0,1] be an aggregation function. Then ψ : Rn → [0,1] defined by
ψ(x) = Am(μ1(x), . . . ,μm(x)) is upper-starshaped on X.

Proposition 5.3 Let X ⊆ Rn be a convex set, let T be a t-norm and let μi : Rn → [0,1],
i = 1,2, . . . ,m, be T -quasiconcave on X such that

Core(μ1) = · · · = Core(μm) 	= ∅.

Let Am : [0,1]m → [0,1] be a strictly monotone aggregation function. Then ψ : Rn → [0,1]
defined for x ∈ Rn by ψ(x) = Am(μ1(x), . . . ,μm(x)) is TD-quasiconcave on X.

The above proposition allows for constructing new TD-quasiconcave function on X ⊆ Rn

from the original T -quasiconcave functions on X ⊆ Rn by using a strictly monotone aggre-
gation operator; for example, the t-conorm SM . It is of interest to note that the condition
Core(μ1) = · · · = Core(μm) 	= ∅ is essential for TD-quasiconcavity of ψ in Proposition 5.3.

The following definition extends the concept of domination between two triangular
norms (2.13) to aggregation operators.
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Definition 5.1 An aggregation operator A = {An}∞
n=1 dominates an aggregation operator

A′ = {A′
n}∞

n=1, if, for all m ≥ 2 and all tuples (x1, . . . , xm) ∈ [0,1]m and (y1, . . . , ym) ∈
[0,1]m, the following inequality holds

Am(A′
2(x1, y1), . . . ,A

′
2(xm, ym))

≥ A′
2(Am(x1, x2, . . . , xm),Am(y1, y2, . . . , ym)).

The following proposition generalizes Proposition 5.1.

Proposition 5.4 Let X ⊆ Rn be a convex set, let A = {An}∞
n=1 be an aggregation operator,

T be a t-norm and let μi : Rn → [0,1], i = 1,2, . . . ,m, be T -quasiconcave on X, and let A
dominates T . Then ϕ : Rn → [0,1] defined by

ϕ(x) = Am(μ1(x), . . . ,μm(x))

is T -quasiconcave on X.

Proof As μi , i = 1,2, . . . ,m, are T -quasiconcave on X, we have μi(λx + (1 − λ)y) ≥
T (μi(x),μi(y)) for every λ ∈ (0,1) and each x, y ∈ X. By monotonicity of aggregating
mapping Am, we obtain

ϕ(λx + (1 − λ)y)

= Am(μ1(λx + (1 − λ)y), . . . ,μm(λx + (1 − λ)y))

≥ Am(T (μ1(x),μ1(y)), . . . , T (μm(x),μm(y))). (5.3)

Using the fact that A dominates T , we obtain

Am(T (μ1(x),μ1(y)), . . . , T (μm(x),μm(y)))

≥ T (Am(μ1(x), . . . ,μm(x)),Am(μ1(y), . . . ,μm(y)))

= T (ϕ(x),ϕ(y)), (5.4)

where T = T (2). Combining (5.3) and (5.4), we obtain the required result. �

6 Extremal properties

In this last section we derive several useful results concerning relations between local and
global maximizers of some aggregations of fuzzy criteria. From the point of view of fuzzy
multi-criteria decision making, such global maximizers are considered as “compromise” de-
cisions. For this purpose we apply Propositions 3.1 and 3.3 in some combinations with the
results on aggregation operators from Propositions 5.2 and 5.4. Some relations between
“compromise” decision and Pareto-optimal decision can be found in Ramík and Vlach
(2002).

Proposition 6.1 Let X ⊆ Rn be a convex set, let T be a t-norm and let μi : Rn → [0,1],
i = 1,2, . . . ,m, be T -quasiconcave on X such that

Core (μ1) ∩ · · · ∩ Core (μm) 	= ∅.
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Let A : [0,1]m → [0,1] be an aggregation function. If ψ : Rn → [0,1] defined by ψ(x) =
A(μ1(x), . . . ,μm(x)) attains its strict local maximum at x∗ ∈ X, then x∗ is a strict global
maximizer of ψ over X.

Proof By Proposition 5.2, ψ is upper-starshaped on X. Now, by Proposition 3.3, we obtain
the required result. �

Proposition 6.2 Let X ⊆ Rn be a convex set, let T be a t-norm and let μi : Rn → [0,1],
i = 1,2, . . . ,m, be T -quasiconcave on X. Let A = {Ak}∞

k=1 be an aggregation operator and
let A dominate T . If ψ : Rn → [0,1] defined by ψ(x) = Am(μ1(x), . . . ,μm(x)) attains its
strict local maximum at x∗ ∈ X, then x∗ is a strict global maximizer of ψ over X.

Proof By Proposition 5.4, function ψ is T -quasiconcave on X. Since each T -quasiconcave
function on X is upper-starshaped on X, the statement follows from Proposition 3.3. �

Proposition 6.3 Let X ⊆ Rn be a convex set, let T be a t-norm and let μi : Rn → [0,1],
i = 1,2, . . . ,m, be semistrictly T -quasiconcave on X. Let A = {Ak}∞

k=1 be a strictly
monotone aggregation operator and let A dominate T . If ψ : Rn → [0,1] defined by
ψ(x) = Am(μ1(x), . . . ,μm(x)) attains its local maximum at x∗ ∈ X, then x∗ is a global
maximizer of ψ over X.

Proof By Proposition 5.4, and strict monotonicity of A, function ψ is semistrictly T -
quasiconcave on X. Then the statement follows from Proposition 3.1. �

Since each t-norm T dominates T and the minimum t-norm TM dominates any other
t-norm T , we obtain the following results.

Corollary 6.1 Let X ⊆ Rn be a convex set, let T be a t-norm, and let μi : Rn →
[0,1], i = 1,2, . . . ,m, be T -quasiconcave on X. If ϕ : Rn → [0,1] defined by ϕ(x) =
T (μ1(x), . . . ,μm(x)) attains its strict local maximum at x∗ ∈ X, then x∗ is a strict global
maximizer of ϕ over X.

Corollary 6.2 Let X ⊆ Rn be a convex set, let T be a strict t-norm, and let μi : Rn → [0,1],
i = 1,2, . . . ,m, be semistrictly T -quasiconcave on X. If ϕ : Rn → [0,1] defined by ϕ(x) =
T (μ1(x), . . . ,μm(x)) attains its local maximum at x∗ ∈ X, then x∗ is a global maximizer of
ϕ over X.

Corollary 6.3 Let X ⊆ Rn be a convex set, let T be a strict t-norm, and let μi : Rn → [0,1],
i = 1,2, . . . ,m, be semistrictly T -quasiconcave on X. If ϕ : Rn → [0,1] defined by ϕ(x) =
TM(μ1(x), . . . ,μm(x)) attains its local maximum at x∗ ∈ X, then x∗ is a global maximizer
of ϕ over X.
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