OXFORD UNIVERSITY COMPUTING LABORATORY
PROGRAMMING RESEARCH GROUP

LAMBDA CALCULUS

C.-H. L. Ong

© C.-H. L. Ong, 1997

Aim

Recursive functions are representable as lambda terms, and definability in the calculus may be regarded
as a definition of computability. This forms part of the standard foundations of computer science.
Lambda calculus is the commonly accepted basis of functional programming languages; and it is folk-
lore that the calculus is the prototypical functional language in purified form. The course investigates
the syntax and semantics of lambda calculus both as a theory of functions from a foundational point
of view, and as a minimal programming language.

Synopsis

Formal theory, fixed point theorems, combinatory logic: combinatory completeness, translations be-
tween lambda calculus and combinatory logic; reduction: Church-Rosser theorem; Bohm’s theorem
and applications; basic recursion theory; lambda calculi considered as programming languages; sim-

ple type theory and PCF: correspondence between operational and denotational semantics; current
developments.

Relationship with other courses

Basic knowledge of logic and computability in paper Bl is assumed.

Selected references

H. Barendregt. The Lambda Calculus. North-Holland, revised edition, 1984.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.
Cambridge Tracts in Theoretical Computer Science 7.

e C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press,
1992.

e G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science
5:223-255, 1975.

[Please send any correction to loQcomlab.ox.ac.uk.]

4.2 Proof of the theorem 30

Since s and ¢ are not Gn-equivalent, for some 4, $; and ¢; are not fn-equivalent. Take 7; = Azy - - zp.7;.

By.oB(s") = s

)

B,.oB(t*) = t!

2

(Note that z does not occur free in S;Y nor tI) Clearly size(s;) + size(t;) < size(s) + size(¢). Hence,

by the induction hypothesis, say B’ is the required Béhm transformation for SZT and t:’ The Bohm
transformation required is just B’ o By, , 0 B.

Case (ii): x € {z1, -, m1 }, say, . = x1, and y & {z1,---, 2 }. Then, for every n; > p,

5% = an 81 Sy = Azpplccc Zng 2281 SpApg1 Ay
£ o=yt
TakeB:BZoanlO~--OBZP+1,
B(S*) — ZST"'S;Zp-i—l"'znla
B(t*) — ytT...tZzp+1...anZ_

Since y # z, result follows from Lemma 4.2.4(1).

Case (iii): x,y € {x1, -,z }.

Suppose x = 1 and y = 29 are distinct:

8" = 8T8, = Azpy1cc Zn ZZS)cccSpZpi1c 2y
E * *k
= ap,]ty = Azgr1c Zng 220 iZgn o Zns

taking ny > p, ng > ¢. Since ny # no result follows from Lemma, 4.2.4(2).

Suppose z =y = x1, take n1 > p, ¢

8= ap 1S, = AZp gl Zn 2281 SpAptlt Zng
o= apti--ty = AZga1 Zn 2287 - bpZqgrt Zny

If p # ¢ then by Lemma 4.2.4(2), n1 — p # ny — ¢, result then follows. If p = ¢ then since s and
1 are not fn-equivalent, for some 4, s; and ¢; are not fGn-equivalent. Let m = Azy---z,,.2z; and
BEB,oB, oo B., . Then

Bm,zOB(S*) = s
By o B({t) = t].

Similar argument as before concludes the proof. 0

Béhm’s Theorem is an immediate consequence of Theorem 4.2.5. For if s is any closed term and B a
Boéhm transformation, then by Lemma 4.2.2 we have Bs = suj - - - uy where uy, - - -, uj depend only on
B. By applying Theorem 4.2.5 we therefore obtain suj - - - ux = f and tuy - - - up = t. (We may suppose
that 7 are closed terms.)

31

5 Call-by-name and call-by-value lambda calculi

According to the so-called function paradigm of computation, the goal of every computation is
to determine its value. Thus to compute is to evaluate. A (by now) standard way to implement
evaluation is by a process of reduction. In this section we shall investigate a couple of important
ideas that have arisen in semantics of functional computation in recent years. We take pure, untyped
A-calculus equipped with call-by-name (CBN) and call-by-value (cBV) reduction strategies as minimal
(and prototypical) functional languages; and consider two operational or behavioural preorders over
terms, namely, applicative simulation and observational (or contextual) preorder. We prove that they
conincide in both ¢BN and ¢BV A-calculi. In other words both languages satisfy the contezt lemma.

5.1 Motivations

The commonly accepted basis for functional programming is the A-calculus; and it is folklore that the
A-calculus is the prototypical functional language in purified form. But what is the M-calculus? The
syntax is simple and classical; variables, abstraction and application in the pure calculus, with applied
calculi obtained by adding constants. The further elaboration of the theory, covering conversion,
reduction, theories and models, is laid out in Barendregt’s already classical treatise [Bar84]. Tt is
nstructive to recall the following crux, which occurs rather early in that work (p. 39):

Meaning of A\-terms: first attempt

» The meaning of a A-term is its normal form (if it exists).

e All terms without normal forms are identified.

This proposal incorporates such a simple and natural interpretation of the A-calculus as a programming
language, that if it worked there would surely be no doubt that it was the right one. However, it gives
rise to an inconsistent theory!

Second attempt: sensible theory

e The meaning of A-terms is based on head normal forms via the notion of Béhm tree.

¢ All unsolvable terms (no head normal form) are identified.

This second attempt forms the central theme of Barendregt’s book, and gives rise to a very beautiful
and successful theory (henceforth referred to as the “standard theory”), as that work shows.

This, then, is the commonly accepted foundation for functional programming; more precisely, for
the lazy functional languages [FW76, HMT76], which represent the mainstream of current functional
programming practice. Examples: Miranda [Tur85], LML [Aug84], Orwell [Wad85], Haskell, and
Gofer. But do these languages as defined and implemented actually evaluate terms to head normal
form? To the best of our knowledge, not a single one of them does so. Instead, they evaluate to weak
head normal form i.e. they do not evaluate under abstractions (see [PJ8T7] for a comprehensive survey
of the pragmatics of functional programming languages). E.g., Az.(Ay.y)s is in weak head normal
form, but not in head normal form, since it contains the head redex (Ay.y)s.

So we have a fundamental mismatch between theory and practice. Since current practice is well-
motivated by efficiency considerations and is unlikely to be abandoned readily, it makes sense to see if
a good modified theory can be developed for it. To see that the theory really does need to be modified,
we consider the following example.

5.2 Call-by-name or Lazy A-calculus 32

Example 5.1.1 Let Q@ = (Az.zz)(A\z.2z) be the standard unsolvable term. Then Az.Q = Q in the
standard theory, since Az.€2 is also unsolvable; but Az.€2 is in weak head normal form, hence should
be distinguished from € in our “lazy” theory.

We now turn to a second point in which the standard theory is not completely satisfactory.

Is the A-calculus a programming language?

In the standard theory, the A-calculus may be regarded as being characterized by the type equation
D = [D— D]

(for justification of this in a general categorical framework, see e.g. [Sco80, Koy82, LS86]).

It is one of the most remarkable features of the various categories of domains used in denotational
semantics that they admit non-trivial solutions of this equation. However, there is no canonical
solution in any of these categories (in particular, the initial solution is trivial — the one-point domain).

We regard this as a symptom of the fact that the pure A-calculus in the standard theory is not a
programming language. Of course, this is to some extent a matter of terminology, but we feel that the
expression “programming language” should be reserved for a formalism with a definite computational
interpretation (an operational semantics). The pure A-calculus as ordinarily conceived is too schematic
to qualify.

5.2 Call-by-name or Lazy A-calculus

We introduce a “toy” functional language that has closed A-terms as programs and (closed) abstrac-
tions as values. The operational semantics is given by a Martin-Léf style evaluation relation
(which is also known as “big-step” reduction relation) simulating a normal order (or leftmost)
reduction strategy that terminates whenever the reduction reaches a weak head normal form (WHNF).

Definition 5.2.1 We define a family {, (n € w) of binary relations over closed A-terms as follows.
For each n, the relation s |}, v (“the program s converges to value v in n steps”) is defined inductively
by the following rules:
s m Az.p p[t/.’l)] Jnv

st $mgnt1 v

Az.p o Az.p

Notation It is useful to fix some shorthand.

lef
syv £ Incwsl,v “s convergesto v”

def
s £ Jvslwv “s converges’

s def =[s] “s diverges”

For example, i(ii) | i and k(ii) | Ay.ii, and Q. Take a A-term s that is not in S-normal form.
Informally the leftmost §-redex of s is the redex that literally “occurs leftmost” in 5. We define
a reduction strategy informally: at each step, contract the leftmost redex and stop as soon as an
abstraction (weak head normal form) is reached. Convince yourself that for any program s, s | v
if and only if s reduces to v by the reduction strategy.

Proposition 5.2.2 (i) Show that (Az.p)t7 §pe1 v <> p[t/z]7 |, v.

(ii) Prove that | is deterministic i.e. it defines a partial function from programs to values: whenever
s vandsl v then v and v' are the same. O

5.3 Applicative simulation and context lemma 33

The BN A-calculus was first introduced by Plotkin in [Plo75]. An extensive study of the calculus can
be found in [AO93].

5.3 Applicative simulation and context lemma

Under the reduction strategy |, the possible “results” are of a particularly simple, indeed atomic kind.
That is to say, a term s either converges to an abstraction (and according to this strategy, we have
no clue as to the structure “under” the abstraction), or it diverges. The relation | by itself is too
“shallow” to yield information about the behaviour of a term under all experiments.

Inspired by the work of Robin Milner [Mil80] and David Park [Par80] on concurrency, we shall use
the reduction relation { as a building block to yield a deeper relation which we call applicative
simulation. To motivate this relation, let us spell out the observational scenario we have in mind:
Given a closed term s, the only experiment of depth 1 we can do is to evaluate s and see if it converges
to some abstraction (weak head normal form) Az.p;. If it does so, we can continue the experiment to
depth 2 by supplying a term #; as input to Az.p;, and so on. Note that what the experimenter can
observe at each stage is only the fact of convergence, not which term lies under the abstraction. We
can picture matters thus:

Stage 1 of experiment: s Az.p1;
environment “consumes” A,
produces t; as input

Stage 2 of experiment: pi[ti/z] ¥ ...

Definition 5.3.1 We define a family of binary relations & (k € w) over A° as follows:

e for any s and s, s 5 s

o s 5puy s provided Vaz.p.[s § Az.p == Fzp'.[s' § dep’ & Vre A%plr/z] 5y p'lr/x]]].
We then define s & s’ to be s 5 s’ for all £ € w. The definition can be extended to all A-terms by
considering closures in the usual way i.e. for 5,5’ € A,

!
o

def
sEsd = Vo:var — A%s,E s

where s, means the “term that is obtained from s by simultaneously substituting o(z) for each free
occurrence of x, with z ranging over the collection var of A-calculus variables”. For example 2 & z
and Qz & .

Write s ~ s’ to mean s & 5" and s’ & s; and set
M [s=t:s5~(wheres,t€ A%}

We say that s and s" are applicatively bisimilar or simply bisimilar just in case s ~ s'. The theory
M is clearly (non-trivial and) consistent.

5.3 Applicative simulation and context lemma 34

Exercise 5.3.2 (i) Show that L is a preorder over A i.e. a reflexive and transitive binary relation.

(ii) Show that (A\z.zz)(Az.zz) ~ (A\z.22z)(Az.3z2) 5 Az.(Az.27)(Az.37); show that Az.z, k and s
are pairwise incompatible w.r.t. k.

(iii) Suppose s} and t{. Show that Az1 - 2p.5 5 A1~ Tn L.
(iv) Show that Az1---zp.s 5 Az1---zp.s f n <m.

For an alternative description of T, recall that the set R of binary relations over A is a complete
lattice under set inclusion. Now, define F': R — R by

def

F(R) {(s,8):Vaz.p[s | Aep = Iap' [L dzp’ & Ve A°([p[t/z],p'[t/=]) € R]]}

It is easy to check that F is a monotone function with respect to the inclusion ordering. A relation
R € R is said to be a pre-simulation just in case R C F(R) i.e. R is a post-fizpoint of F'. Since I
is monotone, by Tarski’s Theorem [Tar55], it has a maximal pre-simulation given by

J R

RCF(R)

since the closure ordinal [Mos74] of (5x: k € w) is w. Note that the maximal post-fixpoint of F' is
also its maximal fixpoint (and this holds generally).

Lemma 5.3.3 Applicative simulation is precisely the maximal pre-simulation. O

We give a useful characterization of k.

Theorem 5.3.4 (Characterization) For any s,s' € A°, s & ¢’ if and only if for any finite (possibly
empty) sequence t of closed \-terms, if st then s’).]

To prove the theorem, we first establish a useful result:
Lemma 5.3.5 (i) If s | Az.p and s’ |} Az.p’ then for any r € A°, for any n = 0,
sr Sy s'r <<= plr/x] C, p[r/m].
(ii) Hence if s and s’ are both convergent then s §,41 s’ <= Vr € A.sr 5y, s'r.

Proof (i) The case of n = 0 is vacuous. Assume s | Az.p and s" Az.p’. Then sr || Ay.q iff
plr/z] I My.q, and s'r |} Ay.¢' iff p'[r/2] |} \y.¢’ Now for the case of n = [+ 1: by definition, sr ki1 s'r
iff if sr | Ay.g then s'r | Ay.¢’ and for any closed t, q[t/y] &1 ¢'[t/y]; i-e. iff if p[r/z] | Ay.q then
p'[r/z] I Ay.¢’ and for any closed t, g[t/y] & ¢'[t/y]; i.e. iff plr/z] Sy p'lr/z]. (i) follows from (i)
and the definition of &, 1. &

We define a family of relations <, with n > 0: s < s’ holds for any s and s'; for n > 0 we define
s <y, 8" by “for any finite sequence i'=1t1, -, tm such that m < n, if st} then s't{}”. To prove the
theorem, it suffices to show:

for alln > 0, <, and %, are equal.

5.3 Applicative simulation and context lemma 35

We shall prove it by induction on n. The base case is obvious. For the inductive case of n =1+ 1, we
may assume w.l.o.g. that s and s’ are both convergent. Observe that s <11 s' iff “whenever sl then
s'l}, and for any closed ¢, st <, s't”. Hence

s<p1 8 by the preceding and assumption
<= Vt.st <;s't by induction hypothesis
<= Vistk s't by Lemma 5.3.5(ii)

— sk 9.
Hence the theorem is proved.

Recall that programs are closed terms. Thus program contexts are just closed contexts i.e. contexts
that have no free A\-variables. We say that s observationally approzimates s’ just in case for any
program context C[X], if C[s] converges then so must C[s']. Informally this means that whatever we
can observe about s, the same can be observed about s’. (Note that convergence is the only thing we
can observe about a computation in the ¢BN A-calculus.)

Definition 5.3.6 The binary relation C over A°, called observational or contextual preorder

is defined as
sE ¢ ¥ yo[X] e A°Cls| = Cs]I-

Observational equivalence captures the intuitive idea that two program fragments are indisguishable
in all possible programming contexts. Though observational preorder is clearly important, it is hard
to reason about it directly. Try proving that Az.z2 C™ \g.zz or Az.zz 5 Az.(Ay.zy). Fortunately
there is a convenient characterization.

Proposition 5.3.7 (Context lemma) Applicative simulation and context preorder coincide.

Proof This is a variation of Berry’s proof of a Context Lemma in [Ber81].

It suffices to prove the following: Let s, s’ range over A°.
sEs = ViewVO[X]eAClsll, = C[s'].

We prove the assertion by induction on [. The base case is obvious. Without loss of generality, consider
the following two cases of closed contexts:

(1) CIX] = Q. PIX])(QIX])RIX],

(2) C[X] = X (PX])Q[X).

—

(1): Suppose C[sl};,;. Define D[X]| = (P[X])[Q[X]/«]R[X]. Then by Proposition 5.2.2 D[s]{.
Invoking the induction hypothesis, we have D[s']{}, which implies that C[s']{}.

(2): Let s = (Az.p)¢. Suppose C[s]{;r1. Define D[X] = (Az.p)d(P[X])Q[X], a context of case (1).
Note that C[s] = D[s]. By an appeal to (1), we have D[s'|}. But D[s'] = sP[s'|Q[s'], and so by
Theorem 5.3.4, because s 5 ', we have s'P[s'|Q[s']{, i.e. C[s']{}. O

5.4 Call-by-value A-calculus 36

Remark 5.3.8 (i) The above result says that if two programs are distinguishable by some program
context then there is some applicative contexrt that distinguishes them. In other words, the com-
putational behaviour of ¢BN A-calculus program is functional, which is what one would expect of a
functional programming language. This property is called operational extensionality in [Blo88].
Milner [Mil77] proved a similar result in the case of simply typed combinatory algebra which he
referred to as the Context Lemma.

(ii) Tt follows immediately from the definition of & that the application operation in A° is monotone
in the left argument with respect to £. Operational extensionality is equivalent to the monotonicity
of the application operation in the right argument, i.e.

sEs = WVtcA®tsEits;
which is the same as saying that £ is a precongruence i.e.

sCs & tEd = st&s't.

5.4 Call-by-value A-calculus

We let p,r,s and ¢ range over A-terms. Programs of Plotkin’s call-by-value (CBV) A-calculus are
closed A-terms, and values, ranged over by u and v, are closed abstractions. Evaluation is defined by
induction over the following rules: for programs Az.p,s and ¢

sdzp tlu plu/z]v
sty v '

Az.pd Ax.p

As before we read s {} v as “program s converges or evaluates to value v”, and write s{} to mean s |} v
for some value v.

Notation: We shall not bother to distinguish notationally the evaluation relation of the CBvV A-calculus
from that of the ¢BN A-calculus, though they are of course distinct relations.

We present the operational semantics in terms of a Plotkin-style transition relation (which is also
known as “small-step” reduction relation) by induction over the following rules:

s> 8

(Az.p)v > plv/z] M

where E[X] ranges over the collection of evaluation contexts defined by the following rules: v and
s range over values and programs respectively

e X is an evaluation context
e if I/ is an evaluation context, then so is vE

e if I/ is an evaluation context, then so is Es.

Note that by definition, the hole occurs exactly once in every evaluation context. We call a term of
the shape (Az.p)v a ¢BV S-redex, and write >> to be the reflexive, transitive closure of >.

Lemma 5.4.1 (Evaluation context) For any program s, s > s' iff there is a unique evaluation
context E[X] and a unique CBV redex A = (Az.p)v such that E[A] = s and s’ = Elp[v/z]]. Hence
big-step (Martin-Lof style evaluation relation) and small-step operational semantics coincide. 0

5.5 Context lemma by Howe’s method 37

Proposition 5.4.2 (Equivalence) For any program s, s | v iff s 3> v where v is a value. g

As in the case of ¢BN MA-calculus, for closed terms s and ¢, we define s & ¢, read s simulates ¢
applicatively, as the conjunction of a countable family of binary relations as follows:

e for any s and §', s K¢ §.

e 5L s justin case whenever s || Az.p then s’ | Az.p" and for every value v, p[v/z] 5 p'[v/z].

We then define s & s’ to be s &y s’ for all k¥ € w. The relation can be extended to A-terms in general:
for any s and ¢, define s & ¢ just in case s, & t, for every value substitution o.

Proposition 5.4.3 For any closed terms s and t, the following are equivalent:

(i) st
(ii) for every finite sequence of closed terms 71, -, 1y, if 74 then t7
(ii) for every finite sequence of values vy, -, vy, if sU|l then 17].

5.5 Context lemma by Howe’s method

Context lemma is valid for ¢BvV A-calculus but the argument in the proof of Proposition 5.3.7 does
not work for the ¢BV calculus. We shall present a proof using what is known as Howe’s method as an
extended exercise.

A value substitution o is just a function ¢ from variables to values. Suppose the variables occurring

free in s are z1, -+, Z, then
f
Sa = S{O«(ml)/xlf"70(37774)/@171}‘

Exercise 5.5.1 Prove the following:
(i) & is a preorder.
(ii)) For any s and ¢ (which are not necessarily closed) and for any value v,
st = slv/z]Ctlu/x].
Definition 5.5.2 (Pre-simulation) Let R be the set of binary relations over the set of closed A-
terms. Define a function F': R — R by: for any R € R
F(R) ¥ {(s,8):Voslo = [Fs v & Vi(uvt,o't) € R]}.

F' is a monotone function with respect to the inclusion ordering. A relation R € R is said to be a
pre-simulation just in case R C F(R). Define < to be the maximal pre-simulation i.e.

< 2 U kR

RCF(R)

5.5 Context lemma by Howe’s method 38

Exercise 5.5.3 Prove the following:
(i) F' is a monotone function (with respect to the inclusion ordering).
(ii) < is the same as &.

Our aim is to prove the Context Lemma.

Definition 5.5.4 (Precongruence candidate) Define a binary relation <, called precongruence
candidate, over the collection of all (not just closed) A-terms by induction over the following rules:

o if zE s then z < s
e ifs<s andt <t and s't’ Er then st < r

e if s <8 and Az.s’ S r then Az.s <.

Exercise 5.5.5 Prove the following:

(i) Whenever s <t and tEr then s <r.

(ii) < is a precongruence i.e. whenever s < s’ and t < t' then st < §'t’, and whenever s < s’ then
Az.s < Az.s'.

Exercise 5.5.6 Prove that < is reflexive. Hence deduce that % is contained in <.

Lemma 5.5.7 (Substitution Lemma) Prove that whenever s < s’ and values v < v then

sfu/z] < §'P'/z)

Exercise 5.5.8 For closed s and s, if s < s' and s | v, then for some v', s' | v and v < v'.

[Hint: Define a notion of “convergence in n steps” s |, v, and prove by induction over n, using the
Substitution Lemma.]

Exercise 5.5.9 Prove that < coincides with . Hence deduce the context lemma.

[Hint: To prove that < is contained in &, it suffices to show that < is a pre-simulation (why?).]

Problems

Unless otherwise specified, assume |} and S as defined in the CBN A-calculus in the following.

5.1 Formalize a small-step reduction for the ¢BN A-calculus and prove that it is equivalent (in the
sense of Proposition 5.4.2) to the big-step presentation.

5.5 Context lemma by Howe’s method 39
5.2 Prove Proposition 5.2.2.

5.3 Prove Lemma 5.3.3.

5.4 (i) Show that = (\z.zz)(Az.zz) is a bottom element and yk a top element with respect to

(i)

(iii)

(iv)
5.8

5.9

applicative simulation.

A classification of closed \-terms.

For any (closed) A-term s, say that s has order O just in case s is not [-conertible to an
abstraction. Suppose s is G-convertible to an abstraction. For n > 1, say that s has order n if
n is largest k such that for some p, AG F s = Az1---zp.p. We say that s has order oo just in
case for no n € w is s of order n. Observe that every closed A-term has a unique order.

Show that a A-term is a bottom element w.r.t. applicative simulation iff it is of order 0; and top
element iff it is of order co.

M 15 a A-theory

Is it true that if A3 s =t then s ~ 7 Is it true that if s = ¢’ and ¢t = ¢ in A\ and if s £ ¢ then
s 57

Prove that AZ is a A-theory.

Show that the axiom () is not valid in A¢. Rather a weaker version, called conditional-n,
sl = Az.sx =3

is valid, where we interpret s] to mean “s converges”.

(i) Show that zz & z(Ay.zy) in the CBN A-calculus. Is it true in the CBv A-calculus?
Are there frn-inequivalent S-normal forms that are equal in A7

The answer to (ii) is yes if we relax the S-normality requirement, or if the pair are only required
to be G-inequivalent. Why?

Convergence testing %

A convergence test is a closed A-term c¢ such that ¢}, and for any s € A°

sl = c¢sl Az
s = csh
Show that there is no convergence test in the CBN A-calculus.

Let T be any order-oo term, and 1 any order-0 term. Let p = Az.x(Ay.2TLly)T and ¢ =
Ar.z(zTL)T. Prove that p ~ q.

Let p’ and ¢’ be obtained from p and ¢ respectively by replacing T in them by Ay.L. Prove that
we still have p’ ~ ¢'.

Show that there is a convergence test in the CBvV A-calculus.
Describe, and characterize if possible, the least and greatest terms w.r.t. & in the cBV A-calculus.

Use Howe’s method to prove that £ in the CBN A-calculus is a precongruence.

