

Proposition 2.3.3. $M =_{\beta} N \Leftrightarrow \lambda \vdash M = N$.

Proof. (\Leftarrow) By induction on the generation of \vdash . (\Rightarrow) By induction one shows

$$M \rightarrow_{\beta} N \Rightarrow \lambda \vdash M = N;$$

 $M \rightarrow_{\beta} N \Rightarrow \lambda \vdash M = N;$
 $M =_{\beta} N \Rightarrow \lambda \vdash M = N.$

Definition 2.3.4.

- 1. A β -redex is a term of the form $(\lambda x.M)N$. In this case M[x:=N] is its contractum.
- 2. A λ -term M is a β -normal form (β -nf) if it does not have a β -redex as subexpression.
- 3. A term M has a β -normal form if $M =_{\beta} N$ and N is a β -nf, for some N.

Example 2.3.5. $(\lambda x.xx)y$ is not a β -nf, but has as β -nf the term yy. An immediate property of nf's is the following.

Lemma 2.3.6. Let $M, M', N, L \in \Lambda$.

1. Suppose M is a β -nf. Then

$$M \rightarrow_{\beta} N \Rightarrow N \equiv M.$$

- 2. If $M \to_{\beta} M'$, then $M[x := N] \to_{\beta} M'[x := N]$.
- **Proof.** 1. If M is a β -nf, then M does not contain a redex. Hence never $M \to_{\beta} N$. Therefore if $M \twoheadrightarrow_{\beta} N$, then this must be because $M \equiv N$.
 - 2. By induction on the generation of \rightarrow_{β} .

Theorem 2.3.7 (Church-Rosser theorem). If $M woheadrightharpoonup_{\beta} N_1, M woheadrightharpoonup_{\beta} N_2$, then for some N_3 one has $N_1 woheadrightharpoonup_{\beta} N_3$ and $N_2 woheadrightharpoonup_{\beta} N_3$; in diagram

The proof is postponed until 2.3.17.

Corollary 2.3.8. If $M =_{\beta} N$, then there is an L such that $M \longrightarrow_{\beta} L$ and $N \longrightarrow_{\beta} L$.

Proof. Induction on the generation of $=_{\beta}$.

Case 1. $M =_{\beta} N$ because $M \longrightarrow_{\beta} N$. Take $L \equiv N$.

Case 2. $M =_{\beta} N$ because $N =_{\beta} M$. By the IH there is a common β -reduct L_1 of N, M. Take $L \equiv L_1$.

Case 3. $M =_{\beta} N$ because $M =_{\beta} N', N' =_{\beta} N$. Then

Corollary 2.3.9.

- 1. If M has N as β -nf, then $M \longrightarrow_{\beta} N$.
- 2. A λ -term has at most one β -nf.
- **Proof.** 1. Suppose $M =_{\beta} N$ with N in β -nf. By corollary 2.3.8 one has $M \xrightarrow{**}_{\beta} L$ and $N \xrightarrow{**}_{\beta} L$ for some L. But then $N \equiv L$, by Lemma 2.3.6, so $M \xrightarrow{**}_{\beta} N$.
 - 2. Suppose M has β -nf's N_1, N_2 . Then $N_1 =_{\beta} N_2 (=_{\beta} M)$. By Corollary 2.3.8 one has $N_1 \longrightarrow_{\beta} L, N_2 \longrightarrow_{\beta} L$ for some L. But then $N_1 \equiv L \equiv N_2$ by Lemma 2.3.6(1).

Some consequences.

1. The λ -calculus is consistent, i.e. $\lambda \not\vdash \text{true} = \text{false}$. Otherwise true $=_{\beta}$ false by Proposition 2.3.3, which is impossible by Corollary 2.3.8

since true and false are distinct β -nf's. This is a syntactical consistency proof.

- 2. $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$ has no β -nf. Otherwise $\Omega \longrightarrow_{\beta} N$ with N in β -nf. But Ω only reduces to itself and is not in β -nf.
- 3. In order to find the β -nf of a term, the various subexpressions of it may be reduced in different orders. If a β -nf is found, then by Corollary 2.3.9 (2) it is unique. Moreover, one cannot go wrong: every reduction of a term can be continued to the β -nf of that term (if it exists). See also Theorem 2.3.20.

Proof of the Church-Rosser theorem

This occupies 2.3.10 - 2.3.17. The idea of the proof is as follows. In order to prove the theorem, it is sufficient to show the following strip lemma:

In order to prove this lemma, let $M \to_{\beta} N_1$ be a one step reduction resulting from changing a redex R in M in its contractum R' in N_1 . If one makes a bookkeeping of what happens with R during the reduction $M \to N_2$, then by reducing all 'residuals' of R in N_2 the term N_3 can be found. In order to do the necessary bookkeeping an extended set $\underline{\Lambda} \supseteq \Lambda$ and reduction $\underline{\beta}$ is introduced. The underlining is used in a way similar to 'radioactive tracing isotopes' in experimental biology.

Definition 2.3.10 (Underlining).

1. $\underline{\Lambda}$ is the set of terms defined inductively as follows:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \underline{\Lambda}; \\ M, N \in \underline{\Lambda} & \Rightarrow & (MN) \in \underline{\Lambda}; \\ M \in \underline{\Lambda}, x \in V & \Rightarrow & (\lambda x.M) \in \underline{\Lambda}; \\ M, N \in \underline{\Lambda}, x \in V & \Rightarrow & ((\underline{\lambda} x.M)N) \in \underline{\Lambda}. \end{array}$$

2. Underlined (one step) reduction $(\rightarrow_{\underline{\beta}}$ and $) \rightarrow_{\underline{\beta}}$ are defined starting with the contraction rules

$$(\lambda x.M)N \to M[x := N],$$

$$(\underline{\lambda}x.M)N \rightarrow M[x := N].$$

Then \rightarrow is extended to the compatible relation $\rightarrow_{\underline{\beta}}$ (also w.r.t. $\underline{\lambda}$ -abstraction) and $\rightarrow_{\underline{\beta}}$ is the transitive reflexive closure of $\rightarrow_{\underline{\beta}}$.

- 3. If $M \in \underline{\Lambda}$, then $|M| \in \Lambda$ is obtained from M by leaving out all underlinings. For example, $|(\lambda x.x)((\underline{\lambda}x.x)(\lambda x.x))| \equiv |(|I|)$.
- 4. Substitution for $\underline{\Lambda}$ is defined by adding to the schemes in definition 2.1.5(3) the following:

$$((\underline{\lambda}x.M)N)[y:=L] \equiv (\underline{\lambda}x.M[y:=L])(N[y:=L]).$$

Definition 2.3.11. A map $\varphi:\underline{\Lambda} \to \Lambda$ is defined inductively as follows:

$$\begin{array}{cccc} \varphi(x) & \equiv & x; \\ \varphi(MN) & \equiv & \varphi(M)\varphi(N), \text{ if } M, N \in \underline{\Lambda}; \\ \varphi(\lambda x.M) & \equiv & \lambda x.\varphi(M); \\ \varphi((\underline{\lambda}x.M)N) & \equiv & \varphi(M)[x := \varphi(N)]. \end{array}$$

In other words, the map φ contracts all redexes that are underlined, from the inside to the outside.

Notation 2.3.12. If $|M| \equiv N$ or $\varphi(M) \equiv N$, then this will be denoted by respectively

$$M \xrightarrow{\hspace*{0.5cm} \mid \hspace*{0.5cm} \mid} N \text{ or } M \xrightarrow{\hspace*{0.5cm} \varphi} N.$$

Lemma 2.3.13.

Proof. First suppose $M \to_{\beta} N$. Then N is obtained by contracting a redex in M and N' can be obtained by contracting the corresponding redex in M'. The general statement follows by transitivity.

Lemma 2.3.14. Let $M, M', N, L \in \underline{\Lambda}$. Then

1. Suppose $x \not\equiv y$ and $x \notin FV(L)$. Then

$$M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$$

2.

$$\varphi(M[x := N]) \equiv \varphi(M)[x := \varphi(N)].$$

3.

Proof. 1. By induction on the structure of M.

- 2. By induction on the structure of M, using (1) in case $M \equiv (\underline{\lambda}y.P)Q$. The condition of (1) may be assumed to hold by our convention about free variables.
- 3. By induction on the generation of $\frac{\beta}{2}$, using (2).

Lemma 2.3.15.

Proof. By induction on the structure of M.

Lemma 2.3.16 (Strip lemma).

Proof. Let N_1 be the result of contracting the redex occurrence $R \equiv (\lambda x.P)Q$ in M. Let $M' \in \underline{\Lambda}$ be obtained from M by replacing R by $R' \equiv (\underline{\lambda}x.P)Q$. Then $|M'| \equiv M$ and $\varphi(M') \equiv N_1$. By Lemmas 2.3.12, 2.3.13 and 2.3.14 we can construct the following diagram which proves the strip lemma.

Theorem 2.3.17 (Church-Rosser theorem). If $M woheadrightarrow_{\beta} N_1, M woheadrightarrow_{\beta} N_2$, then for some N_3 one has $N_1 woheadrightarrow_{\beta} N_3$ and $N_2 woheadrightarrow_{\beta} N_3$.

Proof. If $M \to_{\beta} N_1$, then $M \equiv M_0 \to_{\beta} M_1 \to_{\beta} \dots M_n \equiv N_1$. Hence the CR property follows from the strip lemma and a simple diagram chase:

Normalization

Definition 2.3.18. For $M \in \Lambda$ the reduction graph of M, notation $G_{\beta}(M)$, is the directed multigraph with vertices $\{N \mid M \twoheadrightarrow_{\beta} N\}$ and directed by \rightarrow_{β} . We have a multigraph because contractions of different redexes are considered as different edges.

Example 2.3.19. $G_{\beta}(|(a)|)$ is

A lambda term M is called *strongly normalizing* iff all reduction sequences starting with M terminate (or equivalently iff $G_{\beta}(M)$ is finite). There are terms that do have an nf, but are not strongly normalizing because they have an infinite reduction graph. Indeed, let $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$.