Church-Rosserova véta
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Proposition 2.3.3. M =g N & AFM=DN.

Proof. (&) By induction on the generation of . (=) By induction one

shows

M—gN = IFM=N;
M-—»g N = AFM=N;
M=sN = A-M=N.

Definition 2. 3 4.
1. A (B-redez is a term of the form (Az.M)N. In this case Al[a: = N]is-

its contractum.

2. A Mterm M is a f-normal form (B-nf) if it does not have a (-redex
as subexpression.

3. A term M has a f-normal form if M =g N and Nisa B—nf, for some
N.

Example 2.3.5. (Az.zz)y is not a G-nf, but has as §-nf the term yy.

An immediate property of nf’s is the following.

Lemma 2.3.6. Let M, M',N,L€A.
1. Suppose M is a -nf. Then
M —»3 N = N = M.

2. If M —g M’, then M{z := N] —g M'[z := N].

Proof. 1. If M is a 3-nf, then M does not contain a redex. Hence never
M —g N. Therefore if M —» 5 N, then this must be because M = N.

2. By induction on the generation of —g. ' ' |

Theorent 2.3.7 (Church-Rosser theorem): If M —»g Ny, M —»5 Na; -
then for some N3 one has Ny —»g N3 and Ny —g N3; in diagram
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The proof is postponed until 2.3.17.
Corollary 2.3.8. If Al =5 N, then there is an L such that M —»g L and
N —»g L.

Proof. Induction on the generation of =g.

Case 1. M =g N because M —»5 N. Take L = N.

Case 2. M =5 N because N =g M. By the IH there is a commnion
B-reduct Ly of N, M. Take L = L. :

Case 3. M =g N because M =g N',N' =g N. Then

M N’ N
AN
L. CR Lo

Corollary 2.3.9.

1. If M has N as B-nf, then M —»g N.

. 9. A A-term has at most one -nf.

Proof. 1. Suppose M =g N with NV in §-nf. By corollary 2.3.8 one has
M —»g L and N —»g L for some L. But then N = L, by Lemma
2.3.6,s0 M —g N. :

5. Suppose M has f-nf's Ny, No. Then Ny =5 N (=5 M). By Corol-
lary 2.3.8 one has Ny —p L,Ny, —»g L for some L. But then
N; = L = Ny by Lemma 2.3.6(1).

Some consequences.

1. The A-calculus is consistent, i.e. A} true = false. Otherwise true
=g false by Proposition 2.3.3, which is impossible by Corollary 2.3.8
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since true and false are distinct 8-nf’s. This is a syntactical consis-
tency proof.

9. 9 = (Az.zz)(Az.zz) has no f-nf. Otherwise I —»5 N with NV in
B-nf. But Q only reduces to itself and is not in f-nf.

3. In order to find the fB-nf of a term, the various subexpressions of
it may be reduced in different orders. If a (-nf is found, then by
Corollary 2.3.9 (2) it is unique. Moreover, one cannot go wrong:
every reduction of a term can be continued to the G-nf of that term
(if it exists). See also Theorem 2.3.20. ~

Proof of the Church—Rosser theorem

This occupies 2.3.10 - 2.3.17. The idea of the proof is as follows. In order
to prove the theorem, it is sufficient to show the following strip lemma:

M

Ny

In order to prove this lemma, let M —g N; be a one step reduction
resulting from changing a redex R in M in its contractum R'in N;. If
one makes a bookkeeping of what happens with R during the reduction
M —» Ny, then by reducing all ‘residuals’ of R in N, the term N3 can be
found. In order to do the necessary bookkeeping an extended set A 2D A
and reduction ‘is introduced. The underlining is used in a way similar to
‘radioactive tracing isotopes’ in experimental biology. |

Definition 2.3.10 (Underlining).

1. A is the set of terms defined inductively as follows:

r€e€V = x€A;
MNeEA = (MN)e
MecAzeV = (Az.M)e;
M,NehzeV = ((Az.M)N)eA.

2. Underlined (one step) reduction (—g and) —»g are defined starting
with the contraction rules -
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(Az.M)N— Mz := N},
(Az.M)N—Mlz := N].

Then —+ is extended to the compatible relation —g (also w.r.t. A-
abstraction) and —» g is the transitive reflexive closure of —g.

3. If M € A, then |M]€A is obtained from A by leaving out all under-
linings. For example, |(Az.z)((Az.x)(Az.z))| = I(11).

A. Substitution for A is defined by adding to the schemes in definition
2.1.5(3) the following:

Az ANy := 1] = (e My = L))(Nly := L)).

Definition 2.3.11. - A map p:A—A is defined inductively as follows:

olz) = =
O(MN) = o(M)p(N), it M,N € A;
e(Ax. M) = Az.p(M); ’
o((Az.AN) = o(M)[z = p(N)]-

In other words, the map ¢ contracts all redexes that are underlined, from
the inside to the outside.

Notation 2.3.12. If |M]| = N or ¢(M) = N, then this will be denoted
by respectively

M TN or M — N.

@

. Lqmma 2.3.13.

H ‘ H M',N’EA,
M,N € A.

M ' o N

Proof. First suppose M —g V. Then N is obtained by contracting a redex
. M and N' can be obtained by contracting the corresponding redex in
AL’ The general statement follows by transitivity. |
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Lemma 2.3.14. Let M, M',N,L € A . Then

1. Suppose x %y and x ¢ FV(L). Then

M’tx .= N|[y := L] = M[y := L}[z := N[y := L]].

G(Mz = N]) = o(M)[z := ¢(N)].
| 5 M - N |
| £ .
© v
M,NeA
(P(A[) ........................ F W(N)

Proof. 1. By induction on the structure of M.

5 2. By induction on the structure of M, using (1) in case M = (_)\_Q.P)Q.
: The condition of (1) may be assumed to hold by our convention about

free variables.

3. By induction on the generation of —4 , using (2).

Lemma 2.3.15.

MeA,
" N,LeA.

e

Proof. By induction on the structure of Af. -
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Lemma 2.3.16 (Strip lemma).

M, Nl,Ng,N3 € A.

Proof. Let Ny be the result of contracting the redex occurrence R =
(Az.P)Q in M. Let M' € A be obtained from M by replacing R by R' =
(Az.P)Q. Then |A'| = M and o(M') = N;. By Lemmas 2.3.12, 2.3.13
and 2.3.14 we can construct the following diagram which proves the strip
lemma. '

Theorem 2.3.17 (Church-Rosser theorem). If M —»g Ny, M —»p Na,
then for some N3 one has Ny —g N3 and Ny — g N3.

Proof. 1f M —»p Ny, then M = Mo —p My —g ... M, = Ny Hence the
CR property follows [rom the strip lemma and a simple diagram chase:
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M

Ny

Normalization

Definition 2.3.18. For M €A the reduction graph of M, notation Gg(M),
is the directed multigraph with vertices {N | M —»3 N} and directed by
—5. We have a multigraph because contractions of different redexes are
considered as different edges.

Example 2.3.19. G(I(la)) is
I(Ia) : ®

¥ I

la or simply ®

a &

A lambda term A is called strongly normalizing iff all reduction se-
quences starting with Al terminate (or equivalently iff Gg(B) is finite).
There are terms that do have an nf, but are not strongly normalizing be-
cause they have an infinite reduction graph. Indeed, let 2 = (Az.zz)(Az.zx).



