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4 Bohm’s Theorem

Bohm's theorem was proved in the late '60s and remains possibly the most significant discovery in the
syntax of untyped A-calculus. It gives rise to a powerful technique for obtaining separability results.

4.1 The theorem and its significance

Theorem 4.1.1 (Bé6hm) Let s and t be closed normal \-terms that are not (n-equivalent. Then
there exist closed terms uq,- - -, uy such that

where t = Azy.x and £ = d\zy.y. O

Exercise 4.1.2 Show that t and f of the theorem can be replaced by any pair of closed S-normal
forms that are not Gn-equivalent.

Béhm's theorem is a classic result in the syntax of untyped A-calculus. It is a powerful separability
result,.

An aside on A-theories

A A-theory is a consistent extension of A3 that is closed under provability. A (closed) equation is a
formula of the form s = ¢ where s and ¢ are closed A-terms. If 7 is a set of closed equations, then the
theory A3 + 7 is obtained from A3 by augmenting the axioms by 7.

Definition 4.1.8 Let 7 be a set of closed equations. 7t is the set of closed equations provable in
A3+ T. We say that T is a A-theory just in case 7 = 7+ and T is consistent (i.e. there are terms s
and ¢ such that s = ¢ is not provable in 7).

Corollary 4.1.4 Any A-theory which identifies any two closed normal A-terms that are not [(1-
equivalent is inconsistent. ]

Proof Take any A-terms A and B. Write
D = Jxyz.zyz.

Then we have

DABf =

DABt =

Hence if £ s = ¢t where s and ¢ are any closed normal A-terms that are not 8n-equivalent, then for
the i given by the theorem, we have £ DAB(sd) = DAB(tu), and so,

LFA=DB.
J

The so-called “Bohm-out technique” is crucial to the proof of most local structure characterization
theorems of A-models.
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4.2 Proof of the theorem

First some notations. The permutator of order n is defined to be the following term

def
ap = AT TpT.TT1cc Tp-

Definition 4.2.1 We shall call B6hm transformation any function from A (the collection of A-
terms) to A defined by composing basic functions of the form ¢+ tug or t — t[ug/z] where uy and z
are a given term and variable respectively.

We shall denote the functions as follows:
Buo DT tug

Buo,sc : ?f'-‘}t[UQ/:E}.

Lemma 4.2.2 For every Bohm transformation B, there are terms uy, - -+, ug such that Bs = suy -~ - uy
for every closed term s. 0

Exercise 4.2.3 Prove the lemma.

Lemma 4.2.4 Let s,t be two A-terms. If one of the following

(1) s = zs1-+-5
t = yt1--ty where x £y orp #£ g
(2) s = Ar1- TpT.2S1- " Sp
t = Ary---zpz.aty---ty,  wherem #norp#q
holds then
Bs = f
Bt =t

for some B6hm transformation B.
Proof Case (1):
(i) z #vy, take 0 = Az1 -+ zp.fand 7 = Az --- z,.t. Take B to be B, oB;,. Then

Bs = f

bl = t.

(i) = =y and p < ¢. Then

* *
Baq’xs pond O{qST-.-SZ :)\Zp+1--.zqz.251--.szp+1...zq
- * * fmnd I 1o
Baq,xt = agti-t, = Az.zt] /fq

where (-)* means (-)[cg/z]. This is case (2)(i).
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Case (2):
(i) m # n, say m < n; take distinct variables 21, - -, z,, # not occurring in s,t. Let
B ¥ B,oB, o---0B,,.
Then
Bs =  Zzpi187-- 5;zm+2 e 22
where (-)* is (-)[z1/21, " 2Zm/Tm, Zm+1/2], and
_ T
Bt = zt].--th

where () is (-)[z1 /%1, -, 2n/Zn, z/x]. This is just case (1)(i).

def

(i) m=nand p#¢; let B=B, 0B, o---0B;. We have

Bs = xs51---38
Bt =zt 1y
This is just case (1)(ii).
Note: cases (2)(14) — (1)(4) — (2)(3) — (1)(%). O
Theorem 4.2.5 Let s and t be non-n-equivalent normal A-terms, and z1,-- -,z any distinct vari-
ables. Then for any n1,- - -ny, provided they are large enough, there is a B6hm transformation B such

that
B(S[O‘n1/$1? T 7ank/xk]> = f

B(tlan, /z1, - on, Jzi]) = t.
Proof  The size size(s) of a term s is defined by recursion as follows:
size(z) £ 1
size(st) & size(s) + size(t)
size(Az.s) = size(s) + 2.

We prove by induction on size(s) + size(t).
Case analysis:

(1) s and t are both abstractions

(2) only one of s and ¢ is an abstraction

(3) both are not abstractions.
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Claim: It suffices to consider the last case.

Proof of Claim Take y # z1,- -,z with no occurrence in s and ¢, and let wy and w; be the normal
form of sy and ty respectively. Now wy is not fn-equivalent to wy (why?). Suppose case (1), say
s = Az and t = Az’ then wy = uly/z], wy = vly/z'] and

size(ws) + size(wy) = size(s) + size(t) — 4.

Suppose case (2), say, s = Az.u and t is not an abstraction, then either ¢ is a variable or vivy. Thus
ws = uly/z] and wy = ty and

size(ws) + size(w;) =  size(s) + size(t) — 1.
Hence, in both cases, we can apply the induction hypothesis to wy and w;. Suppose for any ny,---,ng
there exists B such that
B(wg[an, [z1,+ an, /o)) = f
B(wilom, [z, an, [zK]) = t
Take the Béhm transformation B o B, which works for s and ¢. J

We shall consider the case where both s and t are not abstractions, say

s = xS1-"8p
o= yl--tg
where s;,t; are all normal forms.
Fix distinct numbers ny,---,n; and variables z1,- -+, z,. We write

()" for (e, /o1, ang [75].

There are three subcases:

Case (1): z,y & {z1, -,z }.

We have

*

s* = zs]o--sy

p

o= oyt
If z # y or p # ¢ then result follows from Lemma 4.2.4. If x = y and p = ¢ take any number
n>p,ny, --,ng. Then take B=B,0oB, o---0B o Bg, . We have

Zp+t

Bs* = ZSJ{"'S;ZP+1"'ZH

where ()1 is (-)[am, /@1, -+, an, [Tk, O /).



