

OXFORD UNIVERSITY COMPUTING LABORATORY PROGRAMMING RESEARCH GROUP

LAMBDA CALCULUS

C.-H. L. Ong

4 Böhm's Theorem

Böhm's theorem was proved in the late '60s and remains possibly the most significant discovery in the syntax of untyped λ -calculus. It gives rise to a powerful technique for obtaining separability results.

4.1 The theorem and its significance

Theorem 4.1.1 (Böhm) Let s and t be closed normal λ -terms that are not $\beta\eta$ -equivalent. Then there exist closed terms u_1, \dots, u_k such that

$$\begin{cases} s\vec{u} = \mathbf{f} \\ t\vec{u} = \mathbf{t}. \end{cases}$$

where $\mathbf{t} \equiv \lambda xy.x$ and $\mathbf{f} \equiv \lambda xy.y.$

Exercise 4.1.2 Show that t and f of the theorem can be replaced by any pair of closed β -normal forms that are not $\beta\eta$ -equivalent.

Böhm's theorem is a classic result in the syntax of untyped λ -calculus. It is a powerful separability result.

An aside on λ -theories

A λ -theory is a consistent extension of $\lambda\beta$ that is closed under provability. A (closed) equation is a formula of the form s=t where s and t are closed λ -terms. If \mathcal{T} is a set of closed equations, then the theory $\lambda\beta + \mathcal{T}$ is obtained from $\lambda\beta$ by augmenting the axioms by \mathcal{T} .

Definition 4.1.3 Let \mathcal{T} be a set of closed equations. \mathcal{T}^+ is the set of closed equations provable in $\lambda\beta + \mathcal{T}$. We say that \mathcal{T} is a λ -theory just in case $\mathcal{T} = \mathcal{T}^+$ and \mathcal{T} is consistent (i.e. there are terms s and t such that s = t is not provable in \mathcal{T}).

Corollary 4.1.4 Any λ -theory which identifies any two closed normal λ -terms that are not $\beta\eta$ -equivalent is inconsistent.

Proof Take any λ -terms A and B. Write

$$D \equiv \lambda xyz.zyx.$$

Then we have

$$DABf = A$$

$$DAB\mathbf{t} = B.$$

Hence if $\mathcal{L} \vdash s = t$ where s and t are any closed normal λ -terms that are not $\beta \eta$ -equivalent, then for the \vec{u} given by the theorem, we have $\mathcal{L} \vdash DAB(s\vec{u}) = DAB(t\vec{u})$, and so,

$$\mathcal{L} \vdash A = B$$
.

The so-called "Böhm-out technique" is crucial to the proof of most *local structure characterization* theorems of λ -models.

4.2Proof of the theorem

First some notations. The permutator of order n is defined to be the following term

$$\alpha_n \stackrel{\text{def}}{=} \lambda x_1 \cdots x_n x . x x_1 \cdots x_n.$$

Definition 4.2.1 We shall call $B\ddot{o}hm$ transformation any function from Λ (the collection of λ terms) to Λ defined by composing basic functions of the form $t \mapsto tu_0$ or $t \mapsto t[u_0/x]$ where u_0 and x are a given term and variable respectively.

We shall denote the functions as follows:

$$\mathbf{B}_{u_0} : t \mapsto tu_0$$

$$\mathbf{B}_{u_0,x}$$
 : $t \mapsto t[u_0/x]$.

Lemma 4.2.2 For every Böhm transformation B, there are terms u_1, \dots, u_k such that $Bs = su_1 \dots u_k$ for every closed term s.

Exercise 4.2.3 Prove the lemma.

Lemma 4.2.4 Let s, t be two λ -terms. If one of the following

$$(1) \quad s \equiv xs_1 \cdots s_p$$

$$t \equiv yt_1 \cdots t_a$$

 $t \equiv yt_1 \cdots t_q$ where $x \neq y$ or $p \neq q$

$$(2) \quad s \equiv \lambda x_1 \cdots x_m x. x s_1 \cdots s_n$$

$$t \equiv \lambda x_1 \cdots x_n x. x t_1 \cdots t_q$$
 where $m \neq n$ or $p \neq q$

holds then

$$\begin{cases} Bs = \mathbf{f} \\ Bt = \mathbf{t} \end{cases}$$

for some $B\ddot{o}hm$ transformation B.

Proof Case (1):

(i) $x \neq y$, take $\sigma \equiv \lambda z_1 \cdots z_p$. f and $\tau \equiv \lambda z_1 \cdots z_q$. Take B to be $\mathbf{B}_{\sigma,x} \circ \mathbf{B}_{\tau,y}$. Then

$$Bs = \mathbf{f}$$

$$Bt = \mathbf{t}.$$

(ii) x = y and p < q. Then

$$\mathbf{B}_{\alpha_q,x}s = \alpha_q s_1^* \cdots s_p^* = \lambda z_{p+1} \cdots z_q z.z s_1^* \cdots s_p^* z_{p+1} \cdots z_q$$

$$\mathbf{B}_{\alpha_q,x}t = \alpha_q t_1^* \cdots t_q^* = \lambda z.z t_1^* \cdots t_q^*$$

where $(-)^*$ means $(-)[\alpha_q/x]$. This is case (2)(i).

Case (2):

(i) $m \neq n$, say m < n; take distinct variables z_1, \dots, z_n, z not occurring in s, t. Let

$$B \stackrel{\text{def}}{=} \mathbf{B}_z \circ \mathbf{B}_{z_n} \circ \cdots \circ \mathbf{B}_{z_1}.$$

Then

$$Bs = z_{m+1}s_1^* \cdots s_p^* z_{m+2} \cdots z_n z$$

where $(-)^*$ is $(-)[z_1/x_1, \cdots, z_m/x_m, z_{m+1}/x]$, and

$$Bt = zt_1^{\dagger} \cdots t_q^{\dagger}$$

where $(-)^{\dagger}$ is $(-)[z_1/x_1, \dots, z_n/x_n, z/x]$. This is just case (1)(i).

(ii) m = n and $p \neq q$; let $B \stackrel{\text{def}}{=} \mathbf{B}_x \circ \mathbf{B}_{x_m} \circ \cdots \circ \mathbf{B}_{x_1}$. We have

$$Bs = xs_1 \cdots s_p$$

$$Bt = xt_1 \cdots t_q$$

This is just case (1)(ii).

Note: cases $(2)(ii) \longrightarrow (1)(ii) \longrightarrow (2)(i) \longrightarrow (1)(i)$.

Theorem 4.2.5 Let s and t be non- $\beta\eta$ -equivalent normal λ -terms, and x_1, \dots, x_k any distinct variables. Then for any n_1, \dots, n_k , provided they are large enough, there is a Böhm transformation B such that

$$\begin{cases} B(s[\alpha_{n_1}/x_1, \cdots, \alpha_{n_k}/x_k]) &= \mathbf{f} \\ B(t[\alpha_{n_1}/x_1, \cdots, \alpha_{n_k}/x_k]) &= \mathbf{t}. \end{cases}$$

Proof The size size(s) of a term s is defined by recursion as follows:

$$\begin{aligned} &\operatorname{size}(x) & \stackrel{\operatorname{def}}{=} & 1 \\ &\operatorname{size}(st) & \stackrel{\operatorname{def}}{=} & \operatorname{size}(s) + \operatorname{size}(t) \\ &\operatorname{size}(\lambda x.s) & \stackrel{\operatorname{def}}{=} & \operatorname{size}(s) + 2. \end{aligned}$$

We prove by induction on size(s) + size(t).

Case analysis:

- (1) s and t are both abstractions
- (2) only one of s and t is an abstraction
- (3) both are not abstractions.

Claim: It suffices to consider the last case.

Proof of Claim Take $y \neq x_1, \dots, x_k$ with no occurrence in s and t, and let w_s and w_t be the normal form of sy and ty respectively. Now w_s is not $\beta\eta$ -equivalent to w_t (why?). Suppose case (1), say $s \equiv \lambda x.u$ and $t \equiv \lambda x'.v$ then $w_s \equiv u[y/x], w_t \equiv v[y/x']$ and

$$size(w_s) + size(w_t) = size(s) + size(t) - 4.$$

Suppose case (2), say, $s \equiv \lambda x.u$ and t is not an abstraction, then either t is a variable or v_1v_2 . Thus $w_s \equiv u[y/x]$ and $w_t \equiv ty$ and

$$size(w_s) + size(w_t) = size(s) + size(t) - 1.$$

Hence, in both cases, we can apply the induction hypothesis to w_s and w_t . Suppose for any n_1, \dots, n_k there exists B such that

$$\begin{cases} B(w_s[\alpha_{n_1}/x_1, \cdots, \alpha_{n_k}/x_k]) &= \mathbf{f} \\ B(w_t[\alpha_{n_1}/x_1, \cdots, \alpha_{n_k}/x_k]) &= \mathbf{t}. \end{cases}$$

Take the Böhm transformation $B \circ \mathbf{B}_y$ which works for s and t.

We shall consider the case where both s and t are not abstractions, say

$$s \equiv x s_1 \cdots s_p$$
$$t \equiv y t_1 \cdots t_a$$

where s_i, t_j are all normal forms.

Fix distinct numbers n_1, \dots, n_k and variables x_1, \dots, x_k . We write

$$(-)^*$$
 for $(-)[\alpha_{n_1}/x_1,\cdots,\alpha_{n_k}/x_k].$

There are three subcases:

Case (i):
$$x, y \notin \{x_1, \dots, x_k\}$$
.

We have

$$s^* \equiv xs_1^* \cdots s_p^*$$
$$t^* \equiv yt_1^* \cdots t_q^*.$$

If $x \neq y$ or $p \neq q$ then result follows from Lemma 4.2.4. If x = y and p = q take any number $n > p, n_1, \dots, n_k$. Then take $B = \mathbf{B}_z \circ \mathbf{B}_{z_n} \circ \dots \circ \mathbf{B}_{z_{p+1}} \circ \mathbf{B}_{\alpha_n,x}$. We have

$$Bs^* = zs_1^{\dagger} \cdots s_p^{\dagger} z_{p+1} \cdots z_n$$

$$Bt^* = zt_1^{\dagger} \cdots t_p^{\dagger} z_{p+1} \cdots z_n$$

where $(-)^{\dagger}$ is $(-)[\alpha_{n_1}/x_1, \cdots, \alpha_{n_k}/x_k, \alpha_n/x]$.