
Knowledge in Multi-agent systems V 1

Protocols and Programs

Knowledge in Multi-agent systems V 2

Starting in some initial global state, what causes the
system to change state ?

Intuitively, it is clear that changes occur as a result of
actions performed by the agents and the environment.

The agents typically perform their actions deliberately,
according to some protocol.

Protocols are often represented by programs.

Programs are designed to satisfy some specifications.

Motivation

Knowledge in Multi-agent systems V 3

We shall describe

Actions

Protocols and Contexts

Programs

Specifications

Knowledge in Multi-agent systems V 4

We shall illustrate these notions on examples of

Bit-transmission problem

Games

Message-passing systems

Reliable message-passing systems

Asynchronous message-passing systems

Distributed systems

Knowledge in Multi-agent systems V 5

Actions

We already have shown several examples of actions taken by
agents in multi-agent systems. For example,

in message-passing systems, the actions include sending and re-
ceiving messages and possibly some internal actions performed by
agents. So far, we have not considered actions taken by the envi-
ronment. We shall consider environment as an agent as well,

in games G1 and G2 , the actions were moves a1 , a2 , b1 and b2 ,

in a distributed system, an action send(x, j, i) - intuitively corres-
ponding to i sending j the value of variable x . It might be in the
set ACTi of actions of agent i if x is a local variable of i . On
the other hand, if x is not a local variable of i , then it would not
be appropriate to include send(x, j, i) in ACTi .

Knowledge in Multi-agent systems V 6

We take environment as an agent e and we allow it to perform
actions from a set ACTe . .

In message-passing systems, it is appropriate to view message delivery
as an action of environment.

For both the agents and the environment, we allow for the possibility
of a special null action Λ , which corresponds to the agents or envi-
ronment performing no action.

Actions performed simultaneously by different agents in a system
may interact. To deal with potential interactions between actions,
we consider joint actions.

A joint action is a tuple (ae, a1, a2,…,an) , where ae is an action
performed by the environment and ai, is an action performed by
agent i .

Knowledge in Multi-agent systems V 7

Recall

tenvironmen of states possible all ofset eL
iLi agent of states possible all ofset

 states global possible all ofset n1e LLLG ×××= K

 states global of sequence a is rGoverRun

 .point
(time) in the run in the),,,()(

m
rsssmr n1e K=

.,,for)(a)(
sprojection define we,)(),(point in the state global a is

),,,()(If

n1ismrsmr
mrmr

sssmr

iiee

n1e

K

K

===
=

=

Knowledge in Multi-agent systems V 8

Actions

Example 1. (The bit-transmission problem)

Sender ACTS = {sendbit, Λ}

Receiver ACTR = {Λ, sendack}

Environment ACTe = {(a,b) | (a is deliverS (current) or ΛS,

b is deliverR (current) or ΛR }

For example, if e performs (ΛS, deliverR(current)) then R receives

whatever message S sends in that round (if there is one) but S does not

receive any message, and if R did send a message in that round, then that

message is lost.

Knowledge in Multi-agent systems V 9

Example 2. (Asynchronous message-passing systems)

In the previous example, the environment could either deliver the message
currently being sent by either S or R , or it could lose it altogether.

In the , asynchronous message-passing systems (a.m.p. systems) to be
defined later on, the environment has more possible actions e.g. it can decide
to deliver a message an arbitrary number of rounds after it has been sent.

It is also useful to think of the environment in an a.m.p. system as doing
more than just deciding when messages will be delivered.

Recall that in a.m.p. systems we make no assumption on relative speed of
processes. This means that there may be arbitrary long intervals between
actions taken by processes. One way to describe this possibility is to let the
environment to decide when the process is allowed to take an action.

Knowledge in Multi-agent systems V 10

()

 processes. all common to messages possible all ofset theis Here
}.,,,{ and

, where, actions internal theall and),(
actions send of consists processfor actions possible of set The
action)an perform toallowednot is (

action)an perform toallowed is (
) from receives (),(

))((),(
where,form theof actions of consists

MSG
n21j

MSGINTj
iACT

i
i

jij
currentjcurrent

ACT

i

i

e

K

L

K

∈
∈µµ

≈
≈

µ≈µ
≈

=

send

nogo
go
deliver

deliverdelivera
a,,a ,aaa e

i

i

i

Riei

ene2e1e

More formally, in an asynchronous message-passing system
we assume that

Knowledge in Multi-agent systems V 11

Recall that we took the state of each process in an a.m.p. system to be its
history, and said that the environment’s state records the evnts that have
taken place, but we did not described the en vironment’s state in detail.

and far, thusperformed actionsjoint of sequence a is es

iiiint
jijreceive

ijijsend

by),(),a(
),(),,(

by),(),,(
events of setsempty non ofconsist elementslater whose

 and state initialan with starting sequence a ishistory a that

 toscorrespond

 toscorrespond

 toscorrespond

aint
deliver
send

µµ
µµ

i

i

We consider joint actions (ae, a1, a2,…,an) to deal with possible
interactions between actions of different agents. Now, we can take the
environment’s state to be the sequence of joint actions performed thus
far. Hence,

Knowledge in Multi-agent systems V 12

The transition function

performed. actions ereflect th to
 states tsenvironmen theand processes' theupdatessimply τ

.,,,for s,constraint following esatisfy thmust
)`,,`,`,`(then

),,,(where
)`,,`,`,`(),,,,)((

Suppose

n21i
ssss

ssssssss

n21e

n21en21e

K

K

K

KKK

=

=
=τ

ene2e1e

n21e

aaaa
a,,a,a,a

Knowledge in Multi-agent systems V 13

 . cases, other allin
. to),(

 appending ofresult theis then), (current, if
. to),(appending ofresult theis

 then),,(is and), (current, if
.history the to toingdcorrespon

event theappendindg ofresult the is `then),,(
action sendor action l

(appending of result theis `

ii

i

i

ii

i

i

e

ss`
sij,receive

 s`j
sij,µreceives`

ij
s

sj

s

=•
µ

=•

µ==•

µ
=•

•

iei

jjejiei

i

i

iiei

n1e

delivera

sendagoadelivera
a

send
agoa

aa
internaan is and if

 to)a , ... , , es

Knowledge in Multi-agent systems V 14

Notice how the joint actions in a joint tuple interact. For example,

).(and

both havemust weround,current in the by
received be to toby sent message afor order in

and nullified, is ofeffect the, unless

current, j

i
ij

iej

jej

iiei

delivera

go a

agoa

=

=
•

=•

We choose message delivery to be completely under control of envi-
ronment. We could instead assume that when the environment chooses
to deliver a message from i to j , it puts it into a buffer (which is a
component of its local state). In theis case, i would receive a message
only if it actually performed a receive action. We have chosen the
simpler way of modelling message delivery, since it suffices for our
examples.

Knowledge in Multi-agent systems V 15

These examples should make it clear how much freedom we have in
choosing how to model a system.

The effect of a joint action will be very dependent on our choice.

Example 1 (continued).

In the bit-transmission problem, we choose to record in the local state of
S only wheter or not S has received an ack message and not how many
ack messages S receives. The delivery of an ack message may have no
effect on S´ state. If we had chosen instead to keep track of the number
of messages S received, then every message delivery would have
caused a change in S ’s state.

Knowledge in Multi-agent systems V 16

Ideally, we choose a model that is rich enough to capture all the relevant
details, but one that make s it easy to represent state transitions.

Example 2. (continued)

This example shows, that if we represent a process’s state in an a.m.p.
system by its history, modelling the effect of joint action becomes
quite straightforward.

Knowledge in Multi-agent systems V 17

Protocols and Contexts

Agents usually perform actions according to some protocol , which
is a rule for selecting actions. For example in the bit-transmition
problem , the receiver’s protocol involves sending an ack message
after it has received a bit from the sender.

Intuitively, a protocol for agent i is a description what actions
agent i may take, as a function of her local state. We formally
define a protocol Pi for agent i as follows:

Definition. (i) a protocol Pi for agent i is a function from the
set Li of agent´s local states to non-empty sets of actions in ACTi .

Knowledge in Multi-agent systems V 18

(ii) A deterministic protocol Pi maps states to actions (not to subsets of
ACTi) . We write Pi (si) = {a} for each local state si in Li . If Pi is de-
terministic, then we write simply Pi(si) = a .

(iii) It is also useful to view the environment e as running a protocol.

We define a protocol for the environment Pe to be a function from Le to
nonempty subsets of ACTe .

The fact that we consider a set of possible actions allows us to capture
the possible nondeterminism of the protocol. Of course, at a given step
of the protocol, only one of these actions is actually performed; the
choice of action is nondeterministic.

For example, in a message-passing system (see Example 1), we can use
the environment’s protocol to capture the possibility that messages are
lost or that messages may be delivered out of order.

Knowledge in Multi-agent systems V 19

Remark. While our notion of protocol is quite general, there is a
crucial restriction: a protocol is a function on local states, rather
than a function on global states. This captures our intuition that all
the information that the agent has is encoded in his local state, and
not on the whole global state.

In most of our examples, the agents follow deterministic protocols,
but the environment does not.

Thus what an agent does can depend only on his local state, and
not on the whole global state.

In the definition, we allow protocols that are arbitrary (set-theoret-
ical) functions. In practice, we are interested in computable
protocols.

Knowledge in Multi-agent systems V 20

Joint Protocols
Processes do not run their protocols in isolation.

We define a joint protocol P to be a tuple (P1, P2, … ,Pn)
consisting of protocols Pi for each agent.

Comments. Note that, in contrast to joint actions joint protocol does
not include the protocol Pe of the environment. This is because of the
environment’s special role: we usually design the agent’s protocols,
taking the environment’s protocol as given.

In fact, when designing multi-agent systems, the environment is often
seen as an adversary who may be trying to force the system to be-
have in some undesirable way.

Knowledge in Multi-agent systems V 21

In other words the joint protocol P and the environment‘s protocol
Pe can be viewed as the strategies of opposing players.

The joint protocol P and the environment‘s protocol Pe prescribe the
behaviour of all „participants“ in the system and therefore, intuitively,
should determine the complete behaviour of the system.

On closer inspection, the protocols describe only the actions taken by
the agents and the environment. To determine the behaviour of the
system, we also need to know the “context” in which the joint protocol
(of the agents) is executed.

Knowledge in Multi-agent systems V 22

What does such a context consist of ?

• Clearly, the environment’s protocol Pe should be part of the
context, since it determines the environ-ment’s, contribution to the
joint actions.

• In addition, the context should include the tra nsition function τ ,
because it is τ that describes the results of the joint actions.

• Furthermore, the context should contain the set G0 of initial glo-
bal states, because this describes the state of the system when exe-
cution of the protocol begins.

These components of the context provide us with a way of describing
the environment’s behaviour at any single step of an execution.

Knowledge in Multi-agent systems V 23

There are times when we wish to consider more global constraints on
the environment’s behaviour, ones that are not easily expressible by
Pe , τ , and G0 .

To illustrate this point, recall from Example 2. that in an a.m.p. system,
we allow the environment to take actions of the form (ae1, ... , aen) ,
where aei is one of nogoi , goi , deliveri(current, j) , or deliveri(µ, j).

In an a.m.p. system, we can think of the environment’s protocol as
prescribing a nondeterministic choice among these actions at every step,
subject to the requirement that a message is delivered only if it has been
sent earlier but not yet delivered.

Now suppose we consider an a.r.m.p. system, where all message delivery
is taken to be reliable. Note that this does not restrict the environment’s
actions in any given round.

Knowledge in Multi-agent systems V 24

The most straightforward way to model an a.r.m.p. system is to leave
the environment’s protocol unchanged, and place an additional re-
striction on the acceptable behaviour of the environment. Namely, we
require that all messages sent must be delivered by the environment.

There are a number of ways that we could capture such a restriction on
the environment’s behavour. Perhaps the simplest is to specify a
condition Ψ on runs, one that tells us which ones are “acceptable” .

Definition. (The set of acceptable runs)

Let R be a system and Ψ be a condition defining a subset of R.
We say that Ψ is a condition defining the set of acceptable runs.
Namely, r ε Ψ if r satisfies the condition Ψ.

Knowledge in Multi-agent systems V 25

Notice that while the environment’s protocol can be thought of as
describing a restriction on the environment’s behaviour at any given
point in time, the reliable delivery of messages is a restriction on the
environment’s “global” behaviour, namely, on the acceptable (possibly
infinite) behaviours of the environment.

Indeed, often the condition Ψ can be characterized by one (or a col-
lection of) formulas of temporal logic, and the runs in Ψ are those that
satisfy these formulas.

For example, to specify reliable message-passing systems, we could use
the condition

Rel = { r | all messages sent in r are eventually received}

Recall that send (µ , j , i) is the event (we may take it as a proposition-
al formula) that is interpreted to mean “message µ is sent to j by i “

Knowledge in Multi-agent systems V 26

and let receive(µ , i , j) be a proposition that is interpreted to mean
“message µ is received from i by j “. Then a run r is in Rel pre-
cisely if

�(send (µ , j , i) -> <> receive(µ , i , j))

holds at (r, 0) (and thus at every point in r) for each message µ and
processes i , j .

Another condition of interest is True , the condition accepting all runs;
this is the appropriate condition to use if we view all runs as “good”.

Definition. (Context)

Formally, we define a context γ to be a tuple (Pe , G0 , τ , Ψ) , where
Pe is a protocol mapping the set Le of the environment’s local states
to nonempty subsets of ACTe , G0 is a nonempty subset of G , τ is a
transition function, and Ψ is a condition on runs.

Knowledge in Multi-agent systems V 27

There are a number of ways that we could capture such a restriction
on the environment´s behaviour. One of them is to specify a
condition ψ on runs that tells us which ones are „acceptable“.

Set of acceptable runs

ψ is a set of runs usually defined by a condition: r belongs to ψ if r
satisfies the condition ψ. Often the condition ψ can be characterized
by one or more temporal formulas.

Example. (Reliable message-passing systems)

For ψ we could use the condition Rel, where

Rel = { r | all messages sent in the round m are eventually received}

A run r is in Rel iff �(send(µ, j, i) => <>receive(µ, i, j))

holds at (r, 0) (and thus at every point in r) for each message µ and
processes i, j.

Knowledge in Multi-agent systems V 28

Comments. Notice that by including τ in the context we implicitely
include the domain of τ i.e. Le × L1 × ... × Ln as well as the range of τ
consisting of the set ACT which is the product of the set ACTe of the
environment’s actions and the sets ACT1 , ... , ACTn of actions of the
processes, since the domain of τ is the set ACT and the set of global
states is the domain of the transition functions yielded by τ .

To minimize notation, we do not explicitely mention the sets of states and
the sets of actions in the context. (We shall, however, to refer to these
sets and to the set G = Le × L1 × ... × Ln of global states as if they were
part of the context.)

As we shall see later on, the combination of a context γ and a joint
protocol P for the agents uniquely determines a set of runs, which we
shall think of as the system representing the execution of the joint
protocol P in the context γ .

Knowledge in Multi-agent systems V 29

As we shall see later on, the combination of a context γ and a joint
protocol P for the agents uniquely determines a set of runs, which
we shall think of as the system representing the execution of the joint
protocol P in the context γ .

Contexts provide us with a formal way to capture our assumptions
about the systmes under consideration. We give two examples of how
it can be done here; many others appear in the next parts of this pre-
sentation.

Knowledge in Multi-agent systems V 30

Examples 1. and 2. (continued)
In the bit-transmition problem and asynchronous m.p.s. systems, we
assumed that the environment keeps track of the sequence of joint
actions that were performed. We can formalize this in terms of record-
ing contexts.

Definition. (Recording context)
We say that (Pe , G0 , τ, ψ), is a recording context if the following
holds:

)`,,`,`,`(),,,,)((n21en21e ssssssss KKK =τ n21ei a,,a,a,a

then we require that the sequence h´ that occurs in s´e is obtained from se
by appending (ae , a1 , … , an) to the corresponding sequence h .

• the environment`s state is of the form { ... h ... }, where h is a sequence
of joint actions
• in all global states in G0 the sequence h is empty (so that no actions
have been performed initially)
• if

Knowledge in Multi-agent systems V 31

Example 3. (message-passing systems)

In a message-passing system, fix a set Σi of initial states for process i, a set
INTi of internal actions for i , and a set MSG of messages.

Definition. A context (Pe , G0, τ, ψ) is a message-passing context if
• process i´s actions are sets consisting of elements of the form send(µ, j)
or a for a in INTi , µ in MSG and for i = 1, 2, … , n .

• process i´s local states are histories.

• for every global state in G0 we have si in Σi for all
processes.

• if then we
require that either s´i = si or s´i is obtained from si by appending the set
consisting of events corresponding to the above actions and events that cor-
responding to messages sent earlier to i by some process j .

),,,,(n21e ssss K

),`,,`,`,`(),,,,)(a,,a,a,a(21ei n21en21en ssssssss KKK =τ

Knowledge in Multi-agent systems V 32

Comment.

• Intuitively, the state s´i is the result of appending to si the additional
events that occured from process i´s point of view in the most recent
round.

• These consist of the actions performed by i , together with the
messages received by i .

• We allow s´i = si to accomodate the possibility that the environment
performs a nogoi action.

• Note that we have placed no restrictions on Pe , ψ , or the form of the
environments states here , although in practice we often take message-
passing contexts to be recording contexts as well.

• In practice, as we shall see later on, this is the context that capture
a.m.p. systems.

Knowledge in Multi-agent systems V 33

In many cases we have a particular collection Φ of primitive
propositions and a particular thterpretation π for Φ over G in
mind when we define a context. Just as we went from systems to
interpreted systems, we can go from contextes to interpreted
contexts.

Definition. (Interpreted contexts)

An interpreted context is a pair (γ, π) where γ is a context
and π is an interpretation.

(we do not explicitely include Φ here, just as we did not in the
case of interpreted systems and Kripke structures.)

Knowledge in Multi-agent systems V 34

Comments. Recall that an interpretation π is a mapping that gives a
boolean value to each of the basic formulas in the set Φ in every point
of run.

Similarly, as we had some flexibility in describing the global states, we
often some have flexibility in desribing the other components of a
context.

We typically thin k of G0 as describing the initial conditions, while τ
and Pe describe the system’s local behaviour, and ψ describes all
other aspects of the environment’s behaviour.

To describe the behaviour of the system we have to decide what actions
performed by the environments are (this is a part of Pe) and how
these actions interact with the actions of the agents (this is described
by τ .

Knowledge in Multi-agent systems V 35

There is often more than one way in which this can be done. For
example we choose earlier to model message delivery by an explicit
deliver action by the environment rather as the direct result of a send
action by the agents.

Although we motivated the condition ψ by the need to be able to capture
global aspects of the enviroment’s behaviour, we have put no constraints
on the condition ψ. As a result it is possible (although not advisable) to
place much of the burden of determining the initial codnitions and local
behaviour of the environment on the condition ψ.

Thus, for example, we could do away with G0 altogether, have ψ con-
sist only of runs r whose initial state would ha been in G0. In well-cho-
sen context we would expect the components to be orthogonal.

Knowledge in Multi-agent systems V 36

In particular, we expect that Pe would specify local aspects of the
environment’s protocol, while ψ would capture the more global
properties of the environment’s behaviour over time (such as “all
messages are eventually delivered”).

However, there are times, when we need to made further restrictions
on the condition ψ to ensure that it does not interact with the other
coponents of the context in undesired ways. We shall see an exaple of
it later.

We can now talk about the runs of protocol in a given context.

Knowledge in Multi-agent systems V 37

Definition. (Consistent runs)

We say that a run r is consistent with a joint protocol P = (P1, ... , Pn)
in the context γ = (Pe , G0, τ, ψ) if

• r(0) is in G0 (so r(0) is a legal initial state)

• for all m > 0 ,

and), and toaccording)(from performedbeen
have couldt action thajoint aby)(ing transformofresult theis 1)(so
))()(()(such that)()()(

)(action joint a is e then ther),,,,()(if

e

nn11ee

n1e

PPmr
mrmr

mr1mrsPsPsPin
sssmr

+
τ=+×××

=

n1e

n1e

a,,a,a
a,,a,a

KK

KK

• r is in ψ (so that, intuitively, r conforms to the restrictions made by ψ).

Knowledge in Multi-agent systems V 38

Comment. The first condition says that r(0) is a legal initial state. The
second one states that r(m+1) is obtained from r(m) by a joint
action that could have been performed according to P and Pe. The
third condition requires that r conforms with the restriction of ψ .

Definition. (Weakly consistent runs)

We say that r is weakly consistent with P in context γ, if it
satisfies only the first two conditions of the three conditions of
consistency, but is not necessarily in ψ .

Knowledge in Multi-agent systems V 39

Comments

• Intuitively this means that r is consistent only with the step-by-step
behaviour of P.

• Note that there are always runs weakly consistent with P (in the
context γ), it is also possible that there is no run that is consistent
with P in context γ.

• This happens iff there is no run in ψ weakly consistent with P.

Knowledge in Multi-agent systems V 40

Definition. (Consistent systems)

We say that a system R (respectively an interpreted system
is consistent with a protocol P in context γ (resp. interpreted context
(γ, π)) if every run r in R is consistent with P in γ.

),(π= RI

Comment.

Because systems are nonempty sets of runs, this requires that P be
consistent with γ. Typically, there will be many systems consistent with a
protocol in a given context. However, when we think of running a
protocol, we usually have in mind the system where all possible
behaviours of the protocol are represented.

Knowledge in Multi-agent systems V 41

Definition. (Representing systems)

(i) We define Rrep(P, γ) to be the system consisting of all runs
consistent with P in context γ. We call it the system representing
protocol P in context γ.

(ii) Similarly, we say that Irep(P, γ, π) = (Rrep(P, γ), π) is the
interpreted system representing P in the interpreted context (γ, π).

Comments.

• Note that R is consistent with P in γ iff R is a subset of Rrep(P, γ).
so Rrep(P, γ) is the maximal system consistent with P and γ .

• While we are mainly interested in the (interpreted) system representing
P in a given (interpreted) context, there is a good reason to look at some
of the other systems consistent with P in that context as well.

Knowledge in Multi-agent systems V 42

We may start out considering one context γ , and then be interested in
what happens if we restrict attention to a particular set of initial states,
or may wish to see what happens if we limit the behaviour of the
environment.

The following definitions make precise the idea of “restricting” a
context γ.

Knowledge in Multi-agent systems V 43

Definition. (Restricting contexts)

(i) We say that the environment protocol Pe´ is a restriction of Pe
written for every local stateholds)()´(if ,´ eeeeee sPsPPP ⊆<

.ee Ls ∈
(ii) We say that a context γ´ = (Pe´, G0´, τ, ψ`) is a subcontext of
a context γ = (Pe, G0, τ, ψ) and write G0´
is a subset of G and ψ` is a subset of ψ.

 and ´ if ,´ ee PP << γγ

(iii) Similarly, we say that an interpreted context (γ´, π) is a
subcontext of (γ, π) if γ´ is a subcontext of γ .

Lemma.

R is consistent with P in context γ iff R represents P in some
subcontext γ´.

Knowledge in Multi-agent systems V 44

Example 1. (continued)

What are the sender´s and receiver´s protocols in our bit-transmission
problem?

Recall that the sender S is in one of four states 0, 1, (0, ack), (1, ack) ,
and its possible actions are sendbit and Λ. Its protocol PS

bt is quite
straghtforward to describe

• PS
bt(λ) = PS

bt(1) = sendbit

• PS
bt(0, ack) = PS

bt(1, ack) = Λ

Recall that the receiver is in one of three states: λ , 0 , or 1 and its
possible actions are sendack and Λ . The receiver´s protocol is

• PR
bt(λ) = Λ

• PR
bt(0) = PR

bt(1) = sendack

Knowledge in Multi-agent systems V 45

We now need to describe a context for the joint protocol
P bt = (PS

bt , PR
bt). Recall that

• the environment’s state is a sequence recording the events taking
place in the system , and

• the enviroment’s four actions are of the form (a , b), where a is
either deliverS(current) or ΛS , while b is either deliverR(current)
or ΛR .

We view the environment as running the nondeterministic protocol Pe
bt ,

acording to which, at every state, it nondeterministically chooses to per-
form one of these four actions.

The set G0 of initial states is the product {<>}x {0, 1}x {λ} i.e.
initially the environment´s and receiver´s state record nothing, and the
sender´s state records the input bit.

Knowledge in Multi-agent systems V 46

The context capturing the situation described in Example 1. is

γ bt = (Pe
bt , G0 , τ , True)

Moreover, the system Rbt described in Example 1 , is exactly

Rbt = Rrep(Pbt , γbt)

We may want to restrict the environment and the context such that the
system´s communication channel is fair in the sense that every message
sent infitely often is eventually delivered. Thus, a run is in Fair if it
satisfies the formula

(�<> sendbit => <>recbit) & ((�<> sendack => <> recack)

Let γbt
fair be the context we get by replacing True in γbt by Fair.

The system Rfair that represents Pe
bt in a fair setting is then

Rrep(Pbt , γbt
fair)

Knowledge in Multi-agent systems V 47

Example 4. (asynchronous m.p.s.)
Consider a.m.p. system over Σ1, … , Σn , INT1 , …, INTn and MSG. As we
now show, these can be characterized by the context (Pe

amp , G0, τ, True).
This context is both a recording context and a message-passing context.

All we need to do to complete its description is to describe the environment`s
actions and local states:

• since it is a recording context, the environment`s states must include the
sequence of joint actions performed thus far. In fact, here we take the
environment’s state to be precisely this sequence.

• G0 is {<>} x Σ1 x … x Σn ,

• we discussed earlier how the trasition function τ is defined ,

• finally, Pe
amp simply nondeterministically chooses one of the

environment`s actions , except that if deliveri (µ , j) is performed, then the
message µ must have been sent earlier by i to j , and not yet received.

Knowledge in Multi-agent systems V 48

In what sense does γ amp characterize a.m.p. systems?

Suppose that we are given a prefix-closed set Vi of histories for process i .
We show that Vi determines a protocol Pi for process i.

• If h is in Vi and a is in ACTi , let h • a denote the history that results
from appending to h the event a corresponding to the action a.

• We then define Pi(h) = {a | a belogs to ACTi and h • a to Vi }.
Intuitively, Pi(h) consists of all allowable actions according to the set V i .

• Let P amp (V1 , … , Vn) be the the joint protocol that corresponds to the sets
V1 , … , Vn of histories.

(Note that the environment e can determine this just by looking at its sta-
te, since its state records the sequences of actions performed thus far.)

• Call this context γ amp .

Knowledge in Multi-agent systems V 49

(ii) Notice, that if we wanted to consider asynchronous reliable
message passing systems (a.r.m.p. systems) rather than a.m.p. systems,
we would simply replace the condition True in the context γamp by
the condition Rel.

Comments.
(i) it follows from (1) that the right way to think about the a.m.p. system

R(V1 ,…,Vn)
is as the system that results when the processes run the joint protocol

Pamp (V1, … , Vn)

R(V1, … , Vn) is essentially Rrep (P amp (V1, … , Vn), γ amp) (1)

It is not hard to show that

Knowledge in Multi-agent systems V 50

Definition. (Faire Schedule)

Formally, we can capture that the environment runs a faire schedule
by the condition FS that holds of a run if there are infinitely many
goi actions for each process i .

Thus if we add a proposition goi that is true at a state exactly if a
goi was performed by the environment in the preceding round, then
the condition FS can be characterized by the formula

�<>go1 & �<>go2 & …& �<>gon

We may also want to require that the environment follows a fair sche-
dule, in the sense that no process is blocked from moving from some
point on.

Knowledge in Multi-agent systems V 51

Example 5. Games.

Let us reconsider the game-theoretic framework. There, we
described systems that model all possible plays of a game by
including a run for each path of the game.

We did not attempt to model the strategies of the players, which
are the major focus in the game theory.

A strategy is a function that tells a player which move to choose
based on the player’s “current information” about the game.

In our model, a player’s current information is completely captured
by his local state; thus a strategy for player i is simply a deter-
ministic protocol for player i , i.e. a function from his local state
to actions.

Knowledge in Multi-agent systems V 52

Game 1

Let us consider

Knowledge in Multi-agent systems V 53

2) 1, (b

 2 a
1) 1, (b

 1
2) (-3, b

 a
4) 3, (b 2

2

2

1

2

1

1

•
•

•
•

•
•

•

Knowledge in Multi-agent systems V 54

What are the possible strategies for the player 1 in the game G1 ?

Because player 1 takes an action only at the first step, he has only
two possible strategies: “choose a1 ” and “choose a2 ” .

We call these strategies σ1 and σ2 .

Player 2 has four strategies in G1 , since her choice of actions can
depend on what player 1 did.

These strategies can be described by the pairs
. (b1 b1), (b1 b2), (b2 b1), (b2 b2)

The first strategy correspodns to “choose b1 no matter what”. The
second one corresponds to “choose b1 if the player 1 choose a1 and
choose b2 if player 1 choose a2 ” etc.

Knowledge in Multi-agent systems V 55

For example the pair (σ1 , σ11) and the pair (σ1 , σ12) result in the
same play.

Recall that the system R l cooresponding to G1 , contains four runs,
one run for each path in the game e.g. the local state of both players
at the start is the empty sequence < > and their local state after
player 1 chooses a1 is the sequence < a1 >.

We would like to define the protocols for the players that capture
the strategies that they follow. However, there is a difficulty. After
player 1 chooses a1 player’s 2 local state is < a1 >. Thus, a deter-
ministic protocol would tell player 2 to choose either b1 or b2 .
But in R l , player 2 chooses b1 in one run and b2 in another.

Call these strategies σ11 σ12 σ21 σ22 . Note that while there are eight
pairs of strategies (for the two players), there are only four different
plays.

Knowledge in Multi-agent systems V 56

Thus, the set of local states of player 1 includes the states such as
(σ1, < >), (σ1, < a1, b1, >), (σ2 ,< a2 >) etc.

Similarly, the set of local states of player 2 includes states such as
(σ11, < >), (σ12 ,< a2 >), (σ21 ,<a1, b1 >) etc.

Again all the relevant informaton in the system is described by the play-
er’s local states, we can take the environment’s state to be constantly λ.

We now present a system R l‘ that enriches the player’s local states so
that they include not only the history of the game, but also a represent-
ation of the strategy of the player.

Does it mean that player 2 does not follow a deterministic protocol ?
No. Rather it means that our description of his local state is incomplete.

Knowledge in Multi-agent systems V 57

The actions of the players are a1, a2, b1, b2, and Λ . The environment
plays no role here. Its only action is Λ , that is Pe(λ) = Λ . We take τ
as an excercise.

The context γ = (Pe , G0, τ, True) describes the setting in which the
game is played.

There are eight initial states to all pairs of strategies, so G0 consists of
these eight states.

Knowledge in Multi-agent systems V 58

We can now define the protocols for the player’s according to their
strategy. These protocols essenitially say “choose an action according to
your strategy.

The protocol P1 for player 1

• P1 (σi , < >) = ai for i = 1, 2,

• P1 (σi , h) = Λ if h is not < >, for i = 1,2 .

The protocol P2 for player 2

• P2 (σij, < a1 >) = bi for i, j = 1, 2,

• P2 (σij, < a2 >) = bj for i, j = 1, 2,

• P2 (σij, < h >) = Λ if h is neither < a1 > nor < a2 > for i, j = 1, 2,

Knowledge in Multi-agent systems V 59

The system R1´ consists of all runs that start from initial state and are
consistent with the joint protocol

P = (P1 , P2) i.e. R1´ = Rrep(P , γ)

So far we described player’s local states only in terms of their history.
We left out one important point that player’s may have their strategies.

In Game theory the player’s strategies are a focus.

Knowledge in Multi-agent systems V 60

The approach to modeling game trees just dicussed, where player’s local
states contain information about what strategy the player is using is some-
what more complicated.

It does, however, offer some advantages.

Because it captures the strategies used by the player’s, it enables us to
reason about what players know about each other’s strategies, an issue of
critical importance in game theory.

For example, a standard assumption made in the game theory literature is
that players are rational. To make this precise, we give the following
definition.

Knowledge in Multi-agent systems V 61

Definition. (Dominating strategy)

(i) We say that a strategy σ for player i dominates a strategy σ’

if, no matter what strategy the other players are using, player i gets at

least as high a payoff using strategy σ as using strategy σ’ ,

(ii) we say that a strategy σ for player i strictly dominates a strategy

σ’ if it dominates the strategy σ’ and there is some strategy that the

other players could use whereby i gets a strictly higher payoff by

using σ’.

Knowledge in Multi-agent systems V 62

Definition. (a rational player)

(i) According to one notion of rationality a rational player
never uses a strategy if there is another strategy that dominate it.

(ii) We introduce two propositions rationali for i = 1, 2, where

rationali holds at a point if player’s i ‘s strategy at that point is
not dominated by another strategy.

Comment. For player 1 to know that player 2 is rational
means that K1(rational2) holds.

The players can use their knowledge of rationality to eliminate
certain strategies.

Knowledge in Multi-agent systems V 63

If player 1 knows that player 2 is rational, then he knows that
she would use the strategy σ12. With this kowledge, σ1 dominates
σ2 for player 1.

Thus if player 1 is rational, he would then use σ1.

Example 6. Game G1

In game G1 , strategy σ12 dominates all other strategies for
player 2 , so if player 2 were rational, than she would use σ12 .

Knowledge in Multi-agent systems V 64

Note that if player 1 thinks that player 2 is not rational, it may make
sense for 1 to use σ2 instead , since it guarantees a better payoff in
the worst case.

It follows that if both players are rational, and player 1 knows that
player 2 is rational, than their joint strategy must be (σ1 , σ12) and
the payoff is (3, 4).

Knowledge in Multi-agent systems V 65

Game 2

Knowledge in Multi-agent systems V 66

2) 1, (b

 2 a
1) 1, (b

 1
2) (-3, b

 a
4) 3, (b 2

2

2

1

2

1

1

•
•

•
•

•
•

•

Knowledge in Multi-agent systems V 67

How does the game G2 get modeled in this more refined approach?

• Again, player 1 has two possibile strategies, σ1 , and σ2 .

• But now player 2 also has two strategies, which we call σ1’ and σ2’.

• Running σ1’, player chooses action b1, and running σ2’, she
chooses b2 . There is no strategy corresponding to σ12 , since player 2
does not know what action player 1 performed at the first step, and
thus her strategy cannot depend on this action.

• We can define a system R2´ that models this game and captures
player’s strategies.

Knowledge in Multi-agent systems V 68

By way of contrast, even if we assume that rationality is common
knowledge in the game G2 , (assumption that is frequently made by
game theorists), it is easy to see that neither players 1 nor 2 has a
dominated strategy, and so no strategy for either player is eliminated
because of rationality assumption.

Comment.

The above examples show how we can view a context as a description
of a class of systems of interest.

The context describes the setting in which a protocol can be run, and
running distinct protocols in the same context we generate different
systems, all of which share the characteristics of the underlying context.

Knowledge in Multi-agent systems V 69

Programs

Knowledge in Multi-agent systems V 70

We now describe a simple programming language, which is still rich
enough to describe protocols, and whose syntax emphesizes tha fact
that an agent performs actions based on the result of a test that is
applied to her local state.

case of
if t1 do a1

if t2 do a2

...
end case

A (standard) program Pgi for agent i is a statement of the form:

where ti are standard tests for agent i and a j are actions of agent
i i.e. a j belongs to ACTi .

Knowledge in Multi-agent systems V 71

We call such programs “standard” to distinguish them from the
“knowledge based” programs to be introduced later on.

A standard test for agent i is simply a propositional formula over a
set Φi of primitive propositions.

Intuitively, once we know how to evaluate tests in the program at the
local states Li , we can convert this program to a protocol over Li..

At a local state l , agent i nondeterministically chooses one of the
(possibly infinitely many) clauses in the case statement whose test is
true at l , and executes the corresponding action.

We omit the case statement if there is only one clause.

Knowledge in Multi-agent systems V 72

Compatible interpretations.

We want to use an interpretation π to tell us how to evaluate tests.

We intend the tests in a program for agent i to be local , i.e. to depend
only on agent i’s local state.

It would be inappropriate for agent’s i’s action to depend on the truth
value of a test that i could not determine from her local state.

Definition. (Compatible interpretations)

(i) We say that an interpretation π on the global states in G is
compatible with a program Pgi for agent i if every proposition
that appears in Pgi is local to i which means that, if q appears
in Pgi , for any two states s and s’ in G , such that s ~ i s’ ,

Knowledge in Multi-agent systems V 73

(ii) If A is a propositional formula all of whose primitive propositions
are local to agent i , and l is a local state of agent i , then we write

(π, l) |= A

if A is satisfied by the truth assignment π(s), where s = (se , s1, … , sn)
is the global state s = l .

Comment. Because all the primitive proposition in Φ are local to i , it

does not matter which global state s we choose, as long as i’s local

state in s is l .

we have
π(s)(q) = π(s’)(q)

Knowledge in Multi-agent systems V 74

Definition. (Interpreted Protocols)

Given a program Pgi for agent i and an interpretation π compatible with
Pgi , we define a protocol that we denote Pgiπ by setting

{ a j | (π, l) |= t j} if { j | (π, l) |= t j} is nonempty
Pgiπ(l) =

{Λ} otherwise

Comment. Intuitively, Pgiπ selects all actions from the clauses that
satisfy the test, and selects the null action if no test is satisfied.

In general, we get a nondterministic protocol, since more than one test
may be satisfied at a given state.

Knowledge in Multi-agent systems V 75

Many of the definitions for protocols have natural analogues for
programs.

Definition (Joint Programs)

We define a joint program to be a tuple

Pg = (Pg1, … , Pgn)

where Pgi is a program for agent i.

We say that an interpretation π is compatible with Pg if π is
compatible with each Pgi , i = 1, 2, … , n.

From Pg and π we get a joint protocol

Pgπ = (Pg1π , … , Pgnπ)

Knowledge in Multi-agent systems V 76

Definition. (Representing Interpreted Systems)

We say that an interpreted system I = (R, π) represents (resp. ,
is consistent with) a joint program Pg in the interpreted context
(γ , π) iff π is compatible with Pg and I represents (resp. ,
is consistent with) the corresponding protocol Pgπ.

We denote the interpreted system representing Pg in (γ , π) by
Irep(Pg , γ , π).

Comment. Of course, this definition only make sense if π is
compatible with Pg. From now on we always assume that this is
the case.

Knowledge in Multi-agent systems V 77

In such languages, one typically sees constructs as for, while, or

if…then…else, which do not have syntactic analogues in our

formalism.

The semantics of programs containing such constructs depends on the

local state containig instruction counter, specifying the command that

is about to be executed at the local state (of computation).

Notice that the syntactic form of our standard programs is in many ways

more restricted than that of programs e.g. in C or FORTRAN.

Knowledge in Multi-agent systems V 78

The local tests tj used in a program can then reference this variable
explicitely, and the actions a j can include explicite assignments to
the variable.

Given that such simulation can be carried out in our framework,
there is no loss of generality in our definition of standard programs.

Since we model the local state of a process explicitely, it is possible
simulate these constructs in our framework by having an explicite
variable in the local state accounting for the instruction counter.

Knowledge in Multi-agent systems V 79

It is easy to see that every protocol is induced by a standard program if
we have a rich enough set of primitive propositions.

As a result, our programming language is actually more general than
many other languages; a program may induce a non-computable protocol.

However, we are interested in programs that induce computable
protocols.

In fact, standard programs usually satisfy a stronger requirement; they
have finite descriptions, and they induce deterministic protocols.

Knowledge in Multi-agent systems V 80

if ¬ recack do sendbit

Similarly, the receiver R can be viewed as running protocol BTR

if recbit do sendack

The sender S can be viewed as running the following program BTS ,

Let us return to the bit-tranmission problem . We saw earlier the
sender’s protocol.

(Note that if recack or ¬ recbit holds, then, according to our
definitions, the action Λ is selected .)

Knowledge in Multi-agent systems V 81

Let BT = (BTS , BTR) . Recall that we gave an interpretation πbt

describing how the propositions in BTS and BTR are to be inter-
preted.

It is easy to see that πbt is compatible with BT, and that BTπbt is the
joint protocol Pbt described in the paragraph on consistent contexts.

Knowledge in Multi-agent systems V 82

Specifications.

Motivation. When designing or analyzing a multi-agent system, we
typically have in mind some property that we want the system to satisfy.
Very often we start with a desired property and then design a protocol to
satisfy this property.

For example, in the bit-transmition problem the desired property is that
the sender communicates the bit to the receiver.

Knowledge in Multi-agent systems V 83

Thus, a specification can be identified with a class of interpreted
systems, the ones that are “good ”.

Definition. (Interpreted system satisfying a specification)

An interpreted system I satisfies a specification σ if it is in
the class σ i.e. I is in σ.

We call this desired property the specification of the system or
protocol under consideration. A specification is typically given as a
description of the “good ” systems.

Knowledge in Multi-agent systems V 84

Quite often run-based specifications can be desribed by formulas in
temporal logic (with no modal operators for knowledge).

Definition. (Run-based Systems)

We say that a system satisfies a run-based specification if all its
runs do.

Comment. Many specifications that arise in practice are of special type
that we call run-based i.e. a specification given as a property of runs.

Knowledge in Multi-agent systems V 85

Example1. continued (the bit-transmission problem again)

A possible specification for the bit-transmission problem is: “the receiver
eventually receives the bit from the sender and the sender eventually
stops sending the bit ”. This can be expressed as

The truth of this specification can be decided for each run with no
consideration of the system in which the run appears.

<> recbit & <>� ¬ sendbit

Similarly, the run-based property: “in every round every message sent is
delivered or lost ” can be expressed as

�((sendbit -> (recbit v ¬ recbit)) & (sendack -> (recack v ¬ recack))

Knowledge in Multi-agent systems V 86

Knowledge-based Specifications

Motivation. Although run-based specifications arise often in practice,
there are reasonable specifications that are not run-based.

Example. (Muddy children puzzle)

The natural specification of the children’s behaviour is: “a child says
‘Yes’ if he knows whetther he is muddy, and says ‘No’ otherwise”.

This specification is given in terms of the children’s knowledge, which
depends on the whole system and cannot be determined by considering
individual runs in isolation.

We view such a specification as a knowledge-based specification.

Knowledge in Multi-agent systems V 87

Unlike run-based specifications, knowledge-based specifications
specify properties of interpreted systems.

Definition. (Satisfaction of Knowledge-based Properties)

We say that P satisfies σ in the interpreted context (γ , π) (or is
correct with respect to σ in (γ , π)) , if the interpreted system repre-
senting P in (γ , π) satisfies σ i.e. , if Irep(P , γ , π) is in σ
(i.e. in the set of “good” systems).

More generally, we call a specification that is expressible in terms
of epistemic (and possibly other) modal operators a knowledge-
based specification.

Knowledge in Multi-agent systems V 88

Typically, the contexts in Γ are subcontexts of a single context γ .
We shall consider a stronger concept of correctness.

Definition. (Stronger Correctness)

We say that a protocol P strongly satisfies σ in (γ , π) , or that P is
strongly correct with respect to σ in (γ , π) , if every interpreted
system that represents P in a subcontext γ’ of γ satisfies σ.

Often we are interested in the correctness of a protocol with respect not
only one but with respect to some collection Γ of contexts. This
collection of contexts corresponds to the various settings in which we
want to run the protocol.

We know that every system is consistent with P in context γ iff it
represents P in some subcontext γ’ of γ .

Knowledge in Multi-agent systems V 89

Thus, P is strongly correct with respect to σ in (γ , π) iff P is
correct with respect to σ in (γ’ , π) for every subcontext γ’ of γ .

There is one important case where correctness and strong correct-
ness coincide: when σ is a run-based specification. This follows
from the fact that a system is consistent with a protocol iff it is a
subset of the unique system representing the protocol.

In general, correctness and strong correctness do not coincide. If it
is the case, one can argue that strong correctness may be too strong
a notion.

Knowledge in Multi-agent systems V 90

After all, even if we are interested in proving correctness with respect to
certain subcontexts of γ , we are not interested in all subcontexts of γ .

In practice, it is often just as easy to prove strong correctness with respect
to γ as it is to prove correctness for a restricted set of subcontexts of γ .

As before, all our definitions for protocols have natural analogues for
programs.

Definition. (Programs satisfying a specification)

We say that a program Pg (strongly) satisfies σ in an interpreted context
(γ , π) if the protocol Pgπ (strongly) satisfies σ in the interpreted con-
text (γ , π) .

Knowledge in Multi-agent systems V 91

Example 1. continued (the bit-transmition problem)

Let σ’ be the run-based specification for the bit-transmition problem i.e.

<> recbit & <>� ¬ sendbit

Above, we described a standard program BT = (BTS , BTR) for this
problem. We also described an interpreted context (γbt, πbt) for BT.

It is easy to see that BT does not satisfy σ’ in (γbt, πbt) , for there are
runs consistent with BTπ in γbt in which the messages sent by S are never
received by R.

However, we are often interested in assuming that the communication chan-
nel is fair. Recall that γbt

fair is obtained by replacing the condition True
in γbt by Fair.

Knowledge in Multi-agent systems V 92

Thus, γbt
fair differs from γbt in that it ensures that communication

delivery satisfies the fairness condition.

It is not hard to verify that BT does indeed satisfy σ’ in (γbt
fair , πbt).

Since σ’ is a run-based specification, this implies that BT strongly
satisfies σ’ as well.

Hence as long as the communication channel is fair, BT works fine.

We can also give a knowledge-based specification for the bit-trans-
mission problem.

Let σ’’ be the knowledge-based specification: „eventually S
knows that R knows the value of the bit, and S stops seending
messages when it knows that“.

Knowledge in Multi-agent systems V 93

We can express σ’’ as

<>KS KR (bit) & �(KS KR (bit) -> ¬ sendbit)

Comment. This specification is more abstract than σ’, because it
does not refer to the manner in which the agents gain their knowledge.

It is easy to see that BT satisfies σ” in (γbt
fair , πbt).

BT, however, does not strongly satisfy σ” in this context. There
exists a subcontext γbt

ck of γbt
fair such that BT does not satisfies

σ” in (γbt
ck , πbt).

Knowledge in Multi-agent systems V 94

To prove this, assume that γbt
ck is the context where it is common

knowledge that S’s initial value is 1, and the communication channel
is fair i.e. γbt

ck is like γbt
fair , except that the only initial state is

(λ, 1, λ).

Nevertheless, following BT, the sender would send the bit to the recei-
ver in the first round, and would keep sending messages until it receives
an acknowledgment.

Clearly γbt
ck is a subcontext of γbt

fair . In this context, the sender knows
from the outset that the reveiver knows the bit.

This does not conform to the requirement made in σ” that if S knows
that R knows the bit, then S does not send a message. It follows that
BT does not satisfy σ” in (γbt

ck , πbt).

Knowledge in Multi-agent systems V 95

An advantage of σ” is that it can be satisfied without the sender
having to send any message in contexts such as (γbt

ck , πbt) in which
the value of the initial bit is a common k nowledge.

Note that the specification σ” is not run-based. To verify that the
condition <>KS KR (bit) holds, we need to consider the whole
system, not just a run in isolation.

Knowledge-based specifications such as σ” are quite important in
pract-ice. If a system satisfies σ”, we know that in a sense no
unnecessary mes-sages are sent.

This is an information we do not have if we know only that the
system satisfies σ’.

