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Starting in some initial global state, what causes the 
system to change state ?

Intuitively, it is clear that changes occur as a result of 
actions performed by the agents and the environment.

The agents typically perform their actions deliberately, 
according to some  protocol.

Protocols are often represented by programs. 

Programs are designed to satisfy some specifications.

Motivation
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We shall describe

Actions

Protocols and Contexts

Programs

Specifications
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We shall illustrate these notions on examples of

Bit-transmission problem

Games

Message-passing systems

Reliable message-passing systems

Asynchronous message-passing systems

Distributed systems
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Actions

We already have shown several examples of actions taken by 
agents in multi-agent systems. For example,

in message-passing systems, the actions include sending and re-
ceiving messages and possibly some internal actions performed by
agents. So far, we have not considered actions taken by the envi-
ronment. We shall consider environment as an agent as well,

in games  G1 and  G2 , the actions were moves  a1 , a2 , b1 and  b2 , 

in a distributed system, an action  send(x, j, i)  - intuitively corres-
ponding to  i sending  j the value of variable  x . It might be in the 
set  ACTi  of actions of agent  i if  x is a local variable of  i . On 
the other hand, if  x  is not a local variable of  i , then it would not 
be appropriate to include  send(x, j, i)  in  ACTi  . 
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We take environment as an agent   e and we allow it to perform 
actions from a set  ACTe . .

In message-passing systems, it is appropriate to view message delivery
as an action of environment.

For both the agents and the environment, we allow for the possibility 
of a special null action  Λ , which corresponds to the agents or envi-
ronment performing no action.

Actions performed simultaneously by different agents in a system
may interact. To deal with potential interactions between actions, 
we consider joint actions.

A joint action is a tuple (ae, a1, a2,…,an ) , where ae is an action 
performed by the environment and ai, is an action performed by 
agent  i .
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Actions

Example 1. (The bit-transmission problem)

Sender    ACTS = {sendbit, Λ}

Receiver   ACTR = {Λ, sendack}

Environment  ACTe = {(a,b) | (a is deliverS (current) or ΛS,

b is deliverR (current) or ΛR }

For example, if  e performs  (ΛS, deliverR(current)) then  R receives 

whatever message   S sends in that round (if there is one) but S does not 

receive any message, and if  R did send a message in that round, then that 

message is lost.
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Example 2. (Asynchronous message-passing systems)

In the previous  example,  the environment could either deliver the message 
currently being sent by either  S or  R , or it could lose it altogether. 

In the , asynchronous message-passing systems (a.m.p. systems ) to be 
defined later on, the environment has more possible actions e.g. it can decide 
to deliver a message an arbitrary number of rounds after it has been sent.

It is also useful to think of the environment in an a.m.p. system as doing 
more than just deciding when messages will be delivered. 

Recall that in a.m.p. systems we make no assumption on relative speed of 
processes. This means that there may be arbitrary long intervals between 
actions taken by processes. One way to describe this possibility is  to let the 
environment  to decide when the process is allowed to take an action.
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More formally, in an asynchronous message-passing system
we assume that
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Recall that we took the state of each process in an a.m.p. system to be its 
history, and said that the environment’s state records the evnts that have 
taken place, but we did not described the en vironment’s state in detail.
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We consider  joint actions (ae, a1, a2,…,an ) to deal with possible 
interactions between actions of different agents. Now, we can take the 
environment’s state to be the sequence of joint actions performed thus 
far. Hence,
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Notice how the joint actions in a joint tuple interact. For example,
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We choose message delivery to be completely under control of envi-
ronment. We could instead assume that when the environment chooses 
to deliver a message from  i to  j , it puts it into a buffer (which is a 
component of its local state). In theis case,  i would receive a message 
only if it actually performed a  receive action. We have  chosen the 
simpler way of modelling message delivery, since it suffices for our 
examples.
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These examples should make it clear  how much freedom we have in
choosing how to model a system.

The effect of a joint action will be  very dependent on our choice.

Example 1 (continued).

In the bit-transmission problem, we choose to record in the local state of 
S  only wheter or not  S  has received an  ack  message and not how many  
ack  messages  S  receives. The delivery of an  ack  message may have no 
effect on  S´ state. If we had chosen instead to keep track of the number 
of messages   S received, then every message delivery would have 
caused a change in  S ’s  state.
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Ideally, we choose a model that is rich enough to capture all the relevant 
details, but one that make s it easy to represent state transitions.

Example 2. (continued)

This example shows, that if we represent a process’s state in an a.m.p. 
system by its history, modelling the effect of joint action becomes 
quite straightforward.
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Protocols and Contexts

Agents usually perform actions according to some  protocol , which 
is a rule for selecting actions. For example in the bit-transmition 
problem , the receiver’s protocol involves sending an  ack  message 
after it has received a bit from the sender.

Intuitively, a protocol  for agent  i  is a description what actions 
agent i  may take, as a function of her local state. We formally 
define a protocol  Pi  for agent  i as follows:

Definition. (i) a  protocol   Pi for agent i is a function  from the 
set  Li of agent´s local states to non-empty sets of actions in  ACTi . 
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(ii) A  deterministic protocol  Pi maps states to actions (not to subsets of 
ACTi ) . We write  Pi (si ) = {a}  for each local state  si in  Li . If   Pi   is de-
terministic, then we write simply  Pi(si ) = a .

(iii) It is also useful to view the environment  e as running a protocol.

We define a protocol for the environment  Pe to be a function from   Le to 
nonempty subsets of  ACTe .

The fact that we consider a set of possible actions allows us to capture 
the possible nondeterminism of the protocol. Of course, at a given step 
of the protocol, only one of these actions is actually performed; the 
choice of action is nondeterministic. 

For example, in a message-passing system (see Example 1), we can use 
the environment’s protocol to capture the possibility that messages are 
lost or that messages may be delivered out of order.
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Remark. While our notion of protocol is quite general, there is a 
crucial restriction: a protocol is a function on  local  states, rather 
than a function on  global states. This captures our intuition that all 
the information that the agent has is encoded in his local state, and 
not  on the whole global state.

In most of our examples, the agents follow deterministic protocols, 
but the environment does not.

Thus what an agent does can depend only on his local state, and 
not on the whole global state. 

In the definition, we allow protocols that are arbitrary (set-theoret-
ical) functions. In practice, we are interested in computable 
protocols. 
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Joint Protocols
Processes do not run their protocols in isolation.

We define a  joint protocol P to be a tuple   (P1, P2, … ,Pn )  
consisting of protocols  Pi for each agent.

Comments. Note that, in contrast to joint actions joint protocol does 
not include the protocol  Pe of the environment. This is because of the 
environment’s special role: we usually design the agent’s protocols, 
taking the environment’s protocol as given.

In fact, when designing multi-agent systems, the environment is often 
seen as an  adversary who may be trying to force the system to be-
have in some undesirable way.
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In other words the joint protocol  P and the environment‘s protocol  
Pe  can be viewed as the strategies of opposing players.

The joint protocol  P and the environment‘s protocol  Pe prescribe the 
behaviour of all „participants“ in the system and therefore, intuitively, 
should determine  the complete behaviour of the system. 

On closer inspection, the protocols describe only the actions taken by 
the agents and the environment. To determine the behaviour of the 
system, we also need to know the “context” in which the joint protocol 
(of the agents) is executed.
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What does such a context consist of ?  

• Clearly, the environment’s protocol  Pe  should be part of the 
context, since it determines the environ-ment’s, contribution to the 
joint actions.

• In addition, the context should include the tra nsition function  τ , 
because it is  τ that describes the results of the joint actions.

• Furthermore, the context should contain the set  G0   of  initial  glo-
bal states, because this describes the state of the system when exe-
cution of the protocol begins.

These components of the context provide us with a way of describing 
the environment’s behaviour at any single step of an execution.
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There are times when we wish to consider more global constraints on 
the environment’s behaviour, ones that are not easily expressible by   
Pe , τ , and  G0 .

To illustrate this point, recall from  Example 2.  that in an a.m.p. system, 
we allow the environment to take actions of the form  (ae1, ... , aen ) , 
where   aei   is one of  nogoi  ,  goi , deliveri(current, j ) , or deliveri(µ, j ).

In an a.m.p. system, we can think of the environment’s protocol as 
prescribing a nondeterministic  choice among these actions at every step, 
subject to the requirement that a message is delivered only if it has been 
sent earlier but not yet delivered.

Now suppose we consider an a.r.m.p. system, where all message delivery 
is taken to be reliable. Note that this does not restrict the environment’s 
actions in any given round.
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The most straightforward way to model an a.r.m.p. system is to leave 
the environment’s protocol unchanged, and place an additional re-
striction on the acceptable behaviour of the environment. Namely, we 
require that all messages sent must be delivered by the environment.

There are a number of ways that we could capture such a restriction on 
the environment’s behavour. Perhaps the simplest is to specify a 
condition  Ψ on runs, one that tells us which ones are “acceptable” .

Definition. (The set of acceptable runs)

Let  R be a system and  Ψ be a condition defining a subset of   R. 
We say that  Ψ is a  condition defining the set of acceptable runs. 
Namely,  r  ε Ψ if   r satisfies the condition Ψ.
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Notice that while the environment’s protocol can be thought of as 
describing a restriction on the environment’s behaviour at any given 
point in time, the reliable delivery of messages is a restriction on the 
environment’s  “global” behaviour, namely, on the acceptable (possibly 
infinite) behaviours of the environment.

Indeed, often the condition  Ψ can be characterized by one (or a col-
lection of) formulas of temporal logic, and the runs in  Ψ are those that 
satisfy these formulas.

For example, to specify reliable message-passing systems, we could use 
the condition    

Rel = { r | all messages sent in  r are eventually received}

Recall that send (µ , j , i )  is the event (we may take it as a proposition-
al formula) that is interpreted to mean “message  µ is sent to j  by  i “
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and let   receive( µ , i , j )  be a proposition that is interpreted to mean 
“message  µ is received from  i by  j “. Then a run  r is in   Rel  pre-
cisely if

�(send (µ , j , i )  -> <> receive( µ , i , j ))

holds at  ( r, 0 )  (and thus at every point in  r ) for each message  µ and 
processes  i , j .

Another condition of interest is   True , the condition accepting all runs; 
this is the appropriate condition to use if we view all runs as “good”.

Definition. (Context)

Formally, we define a context   γ to be a tuple  (Pe , G0 , τ , Ψ ) , where 
Pe   is a protocol  mapping the set   Le  of the environment’s local states 
to nonempty subsets of   ACTe  , G0 is a nonempty subset of  G , τ is a 
transition function, and Ψ is a condition on runs.
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There are a number of ways that we could capture such a restriction 
on the environment´s behaviour. One of them is to specify a 
condition  ψ on runs that tells us which ones are „acceptable“.

Set of acceptable runs

ψ is a set of runs usually defined by a condition: r belongs to  ψ if  r
satisfies the condition ψ. Often the condition ψ can be characterized 
by one or more temporal formulas.

Example. (Reliable message-passing systems)

For  ψ we  could use the condition  Rel, where

Rel = { r | all messages sent in the round  m are eventually received}

A run  r is in  Rel iff   �(send(µ, j, i)  =>  <>receive(µ, i, j))

holds at  (r, 0) (and thus at every point in  r ) for each message µ and 
processes  i, j.
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Comments. Notice that by including  τ in the context we implicitely 
include the domain of   τ i.e.  Le × L1 × ... × Ln  as well as the range of  τ
consisting of the set   ACT  which is the product of the set   ACTe   of the 
environment’s actions and the sets ACT1 , ... , ACTn of actions of the 
processes,  since the domain of  τ is the set  ACT  and the set of global 
states is the domain of the transition functions yielded by τ . 

To minimize notation, we do not explicitely mention the sets of states and 
the sets of actions in the context.  (We shall, however, to refer to these 
sets and to the set   G  = Le × L1 × ... × Ln    of global states as if they were 
part of the context.)  

As we shall see later on, the combination of a context   γ and a joint 
protocol  P   for the agents uniquely determines a set of runs, which we 
shall think of as the system representing the execution of the joint 
protocol  P  in the context  γ . 
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As we shall see later on, the combination of a context   γ and a joint 
protocol  P   for the agents uniquely determines a set of runs, which 
we shall think of as the system representing the execution of the joint 
protocol  P in the context  γ .

Contexts provide us with a formal way to capture our assumptions
about the systmes under consideration. We give two examples of how 
it can be done here; many others appear in the next parts of this pre-
sentation.
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Examples 1. and 2.  (continued)
In the bit-transmition problem and asynchronous  m.p.s. systems, we 
assumed that the environment keeps track of the sequence of joint 
actions that were performed. We can formalize this in terms of record-
ing contexts.

Definition. (Recording context)
We say that  (Pe , G0 , τ, ψ ),  is a  recording context if the following 
holds:

)`,,`,`,`(),,,,)(( n21en21e ssssssss KKK =τ n21ei a,,a,a,a

then we require that the sequence   h´ that occurs in  s´e is obtained  from  se
by appending  (ae , a1 , … , an ) to the corresponding sequence  h .

• the environment`s state is of the form { ... h ... }, where  h is a sequence 
of joint actions
• in all global states in  G0 the sequence   h is empty (so that no actions 
have been performed initially)
• if  
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Example 3. (message-passing systems)

In a message-passing system, fix a set  Σi of initial states for process  i, a set 
INTi of internal actions for   i , and a set  MSG of messages.

Definition. A context (Pe , G0, τ, ψ)  is a message-passing context if
• process   i´s  actions are sets consisting of elements of the form  send(µ, j)  
or   a for   a in  INTi , µ in MSG  and for i = 1, 2, … , n .

• process   i´s local states are histories.

• for every global state                                  in  G0 we have   si in   Σi for all 
processes.

• if                                                             then we 
require that either  s´i =  si or s´i is obtained from si by  appending the set 
consisting of events corresponding to the above actions and events that cor-
responding to messages sent earlier to  i by some process   j .

),,,,( n21e ssss K

),`,,`,`,`(),,,,)(a,,a,a,a( 21ei n21en21en ssssssss KKK =τ
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Comment.

• Intuitively, the state  s´i is the result of appending to  si the additional 
events  that occured from process  i´s  point of view in the most recent 
round.

• These consist of the actions performed by   i ,  together with the 
messages received by  i .

• We allow  s´i =  si to accomodate the possibility that the environment 
performs a   nogoi action.

• Note that we have placed no restrictions on   Pe , ψ , or the form of the 
environments states here , although in practice we often take message-
passing contexts to be recording contexts as well.

• In practice, as we shall see later on, this is the context that capture  
a.m.p. systems.
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In many cases we have a particular collection  Φ of primitive 
propositions and a particular thterpretation   π for  Φ over  G  in 
mind when we define a context. Just as we went from systems to 
interpreted systems, we can go from contextes to interpreted 
contexts.

Definition. (Interpreted contexts)

An interpreted context is a pair  (γ, π) where   γ is a context 
and   π is an interpretation.

(we do not explicitely include  Φ here, just as we did not in the 
case of interpreted systems and Kripke structures.)
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Comments. Recall that an interpretation   π is a mapping that gives a 
boolean value to each of the basic formulas  in the set  Φ in every point 
of run. 

Similarly, as we had some flexibility in describing the global states, we 
often some have flexibility in desribing the other components of a 
context.

We typically thin k of   G0 as describing the initial conditions, while   τ
and   Pe  describe the  system’s local behaviour, and  ψ describes all 
other aspects of the environment’s behaviour.

To describe the behaviour of the system we have to decide what actions 
performed by the environments are (this is a part of  Pe  )  and how 
these actions interact with the actions of the agents (this is described  
by τ . 
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There is often more than one way in which this can be done. For 
example we choose earlier to model message delivery by an explicit 
deliver action by the environment rather as the direct result of a send
action by the agents. 

Although we motivated the condition  ψ by the need to be able to capture 
global aspects of the enviroment’s behaviour, we have put no constraints 
on the condition  ψ. As a result it is possible (although not advisable) to 
place much of the burden of determining the initial codnitions and local 
behaviour of the environment on the condition ψ. 

Thus, for example, we could do away with  G0 altogether,  have  ψ con-
sist only of runs  r whose initial state would ha been in  G0. In  well-cho-
sen context we would expect the components to be orthogonal.



Knowledge in Multi-agent systems V 36

In particular, we expect that  Pe would specify local aspects of the 
environment’s protocol, while  ψ would capture the more global 
properties of the environment’s behaviour over time (such as “all 
messages are eventually delivered”).

However, there are times, when  we need to made further restrictions 
on the condition  ψ to ensure that it does not interact with the other
coponents of the context in undesired ways. We shall see an exaple of 
it later.

We can now talk about the runs of protocol in a given context.
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Definition. (Consistent runs)

We say that a run   r  is consistent with a joint protocol P = (P1,  ... , Pn ) 
in the context γ = (Pe , G0, τ, ψ) if

• r(0) is in   G0 (so  r(0)  is a legal initial state)

• for all  m > 0 ,
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• r is in  ψ (so that, intuitively, r conforms to the restrictions made by ψ).
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Comment. The first condition says that r(0) is a legal initial state. The 
second one states that  r(m+1)  is obtained from  r(m)  by a joint 
action that could have been performed according to  P and  Pe. The 
third condition requires that  r conforms with the restriction of  ψ .

Definition.  (Weakly consistent runs)

We say that  r is weakly consistent with P  in context  γ,  if it 
satisfies only the first two conditions of the three  conditions of 
consistency, but is not necessarily in  ψ . 
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Comments

• Intuitively this means that  r  is consistent only with the  step-by-step  
behaviour of   P.

• Note that there are always runs weakly consistent with   P  (in the 
context  γ ), it is also possible that there is no run that is consistent 
with  P  in context γ.

• This happens iff there is no run in  ψ weakly consistent with  P.
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Definition. (Consistent systems)

We say that a system   R (respectively an interpreted system                   
is consistent with a protocol   P  in context  γ (resp. interpreted context 
(γ, π))  if every run  r in  R is consistent with   P in   γ.

),(  π= RI

Comment. 

Because systems are nonempty sets of runs, this requires that  P be 
consistent with  γ. Typically, there will be many systems consistent with a 
protocol in a given context. However, when we think of running a
protocol, we usually have in mind the system where all possible 
behaviours of the protocol are represented.
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Definition. (Representing systems)

(i) We define Rrep(P, γ)  to be the system consisting of all runs 
consistent with  P in context   γ.  We call it the system representing 
protocol  P  in context  γ.

(ii) Similarly, we say that   Irep(P, γ, π ) = (Rrep(P, γ), π )  is the
interpreted system representing   P  in the interpreted context (γ, π). 

Comments.

• Note that   R is consistent with   P in  γ iff   R is a subset of Rrep(P, γ). 
so  Rrep(P, γ)   is the maximal system consistent with  P and γ .

• While we are mainly interested in the (interpreted) system representing   
P in a given (interpreted) context, there is a good reason to look at some  
of the other systems consistent with  P in that context as well.  
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We may start out considering one context  γ , and then be interested in 
what happens if we restrict attention to a particular set of initial states, 
or may wish to see what happens if we limit the behaviour of the
environment. 

The following definitions make precise the idea of “restricting” a 
context  γ.
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Definition. (Restricting contexts)

(i)  We say that the environment protocol   Pe´ is a restriction of   Pe
written                                                         for every local stateholds   )()´(    if  ,´ eeeeee sPsPPP ⊆<

.ee Ls ∈
(ii) We say that a context   γ´ = (Pe´, G0´, τ, ψ`)  is a subcontext of     
a context γ = (Pe, G0, τ, ψ)  and write                                          G0´
is a subset of   G and  ψ` is a subset of   ψ.

  and  ´  if  ,´ ee PP << γγ

(iii) Similarly, we say that an interpreted context   (γ´, π)   is a 
subcontext of   (γ, π)   if    γ´ is a subcontext of   γ . 

Lemma.

R is consistent with P  in context  γ iff   R represents P   in some
subcontext γ´. 
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Example 1. (continued)

What are the sender´s and receiver´s protocols in our bit-transmission 
problem?

Recall that the sender  S is in one of four states   0, 1, (0, ack), (1, ack) , 
and its possible actions are sendbit and  Λ.  Its protocol   PS

bt  is quite 
straghtforward to describe

• PS
bt(λ) = PS

bt(1) = sendbit

• PS
bt(0, ack) = PS

bt(1, ack) = Λ

Recall that the receiver is in one of three states: λ , 0 , or 1 and its 
possible actions are sendack and  Λ . The receiver´s protocol is

• PR
bt(λ) = Λ

• PR
bt(0) = PR

bt(1) = sendack
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We now need to describe a context for the joint protocol        
P bt  =  (PS

bt , PR
bt).  Recall that

• the environment’s  state is a sequence recording the events taking 
place in the system , and

• the enviroment’s four actions are of the form   (a , b),  where   a is 
either  deliverS(current)  or ΛS , while  b is either  deliverR(current)   
or  ΛR . 

We view the environment as running the nondeterministic protocol Pe
bt ,

acording to which, at every state, it nondeterministically chooses to per-
form one of these four actions. 

The set  G0 of initial states is the product  {<>}x {0, 1}x {λ}  i.e. 
initially the environment´s and receiver´s state record nothing, and the 
sender´s state records the input bit.
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The context capturing the situation described in Example 1.  is 

γ bt = (Pe
bt  , G0 , τ , True )

Moreover, the system  Rbt  described in Example 1 , is exactly

Rbt = Rrep(Pbt , γbt) 

We may want to restrict the environment and the context such that the 
system´s communication channel is  fair in the sense that every message 
sent infitely often is eventually delivered. Thus, a run is in  Fair if it 
satisfies the formula

(�<> sendbit  =>  <>recbit) &  ((�<> sendack => <> recack)

Let   γbt
fair be the context we get by replacing   True   in   γbt by  Fair.   

The system Rfair that represents   Pe
bt in a fair setting is then

Rrep(Pbt , γbt
fair)
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Example 4. (asynchronous m.p.s.)
Consider a.m.p. system over  Σ1, … , Σn , INT1 , …, INTn and   MSG. As we 
now show, these can be characterized by the context   (Pe

amp , G0, τ, True ). 
This context is both a recording context and a message-passing context.

All we need to do to complete its description is to describe the environment`s   
actions and local states:

• since it is a recording context, the environment`s states must include the 
sequence of joint actions performed thus far. In fact, here we take the 
environment’s state to be precisely this sequence.

• G0 is   {<>} x Σ1 x … x Σn ,

• we discussed earlier how the trasition function  τ is defined ,

• finally, Pe
amp  simply  nondeterministically chooses one of the 

environment`s actions , except that if  deliveri ( µ , j ) is performed, then the 
message  µ must have been sent earlier by  i to  j , and not yet received.
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In what sense does   γ amp characterize a.m.p. systems?

Suppose that we are given a prefix-closed set  Vi  of histories for process  i .
We show that   Vi  determines a protocol   Pi   for process   i.

• If   h  is in  Vi  and  a is in   ACTi , let   h • a   denote the history that results 
from appending to  h the event   a corresponding  to the action  a.

• We then define  Pi(h) = {a | a belogs to ACTi  and   h • a   to   Vi  }. 
Intuitively, Pi(h) consists of all allowable actions according to the set  V i .

• Let P amp (V1 , … , Vn ) be the the joint protocol that corresponds to the sets 
V1 , … , Vn of histories.

(Note that the environment  e  can determine this just by looking at its sta-
te, since its state records the sequences of actions performed thus far.)

• Call this context    γ amp . 
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(ii)  Notice, that if we wanted to consider asynchronous  reliable   
message passing systems (a.r.m.p. systems) rather than a.m.p. systems,   
we would simply replace the condition    True in the context    γamp   by 
the condition   Rel.

Comments. 
(i) it follows from (1) that the right way to think about the a.m.p. system  

R(V1 ,…,Vn ) 
is as the system that results when the processes run the joint protocol

Pamp (V1, … , Vn )

R(V1, … , Vn ) is essentially   Rrep (P amp (V1, … , Vn ), γ amp )  (1)

It is not hard to show that
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Definition. (Faire Schedule)

Formally, we can capture that the environment runs a  faire schedule
by the condition  FS that holds of a run if there are infinitely many  
goi actions for each process   i . 

Thus if we add a proposition   goi that is true at a state exactly if a  
goi was performed by the environment in the preceding round, then 
the condition   FS can be characterized  by the formula

�<>go1 & �<>go2 & …& �<>gon 

We may also want to require that the environment follows a  fair sche-
dule, in the sense that no process is blocked from moving from some 
point on.
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Example 5.  Games.

Let us reconsider the game-theoretic framework. There, we 
described systems that model all possible plays of a game by 
including a run for each path of the game.

We did not attempt to model the  strategies of the players, which 
are the major focus in the game theory.

A  strategy is a function that tells a player which move to choose 
based on the player’s  “current information” about the game.

In our model, a player’s current information is completely captured 
by his local state; thus a strategy for player   i is simply a deter-
ministic protocol for player   i ,  i.e.  a function from his local state 
to actions.  



Knowledge in Multi-agent systems V 52

Game  1

Let us consider
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What are the possible strategies for the player 1 in the game   G1 ?

Because player 1 takes an action only at the first step, he has only 
two possible strategies:  “choose   a1 ” and  “choose   a2 ” . 

We call these strategies   σ1   and   σ2 .

Player  2  has four strategies in  G1  , since her choice of actions can 
depend on what player 1 did.

These strategies can be described by the pairs                  
.                         (b1 b1), (b1 b2), (b2 b1), (b2 b2) 

The first strategy correspodns to “choose  b1 no matter what”. The 
second one corresponds to “choose b1 if the player 1 choose a1 and 
choose   b2 if player  1 choose  a2 ” etc.
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For example the pair  (σ1 , σ11)  and the pair  (σ1 , σ12)  result in the 
same play.

Recall that the system   R l cooresponding to  G1 , contains four runs, 
one run for each path in the game  e.g. the local state of both players 
at the start is the empty sequence  < >  and their local state after 
player  1 chooses  a1 is the sequence   < a1 >.

We would like to define the protocols for the players that capture                     
the strategies that they follow. However, there is a difficulty. After 
player 1 chooses  a1 player’s  2  local state is  < a1 >. Thus, a deter-
ministic protocol would tell player  2  to choose either  b1 or  b2 .  
But in  R l , player  2  chooses   b1 in one run and   b2 in another.

Call these strategies  σ11 σ12 σ21 σ22 . Note that while there are eight 
pairs of strategies (for the two players), there are only four different 
plays. 
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Thus,  the set of local states of player  1  includes the states such as        
(σ1, < >), (σ1, < a1, b1, >), (σ2 ,< a2 >) etc. 

Similarly, the set of local states of player  2 includes states such as     
(σ11, < >), (σ12 ,< a2 >), (σ21 ,<a1, b1 >)  etc.

Again all the relevant informaton in the system is described by the play-
er’s local states, we can take the environment’s state to be constantly   λ.

We now present a system  R l‘ that enriches the player’s local states so 
that they include not only the history of the game, but also a represent-
ation of the strategy of the player.

Does it mean that player  2  does not follow a deterministic protocol ? 
No. Rather it means that our description of his local state is incomplete.



Knowledge in Multi-agent systems V 57

The actions of the players are  a1, a2, b1, b2, and  Λ . The environment 
plays no role here. Its only action is  Λ , that is  Pe(λ) = Λ .  We take   τ
as an excercise. 

The context   γ = (Pe , G0, τ, True) describes the setting in which the 
game is played.

There are eight initial states to all pairs of strategies, so  G0 consists of 
these eight states.
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We can now define the protocols for the player’s according to their 
strategy. These protocols essenitially say “choose an action according to 
your strategy.

The protocol  P1  for player  1

• P1 (σi , < >) = ai for  i = 1, 2,

• P1 (σi , h ) = Λ if   h is not < >, for  i = 1,2 .

The protocol  P2   for player 2

• P2 (σij, < a1 >) = bi for  i, j = 1, 2,

• P2 (σij, < a2 >) = bj for  i, j = 1, 2,

• P2 (σij, < h >) = Λ if  h  is neither < a1 > nor < a2 > for  i, j = 1, 2,
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The system   R1´ consists of all runs that start from initial state and are 
consistent  with the joint protocol

P = (P1 , P2 )    i.e.   R1´ = Rrep(P , γ ) 

So far we described player’s local states only in terms of their history. 
We left out one important point that player’s may have their strategies.

In  Game theory the player’s  strategies are a focus.
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The approach to modeling game trees just dicussed, where player’s local 
states contain information about what strategy the player is using is some-
what more complicated. 

It does, however, offer some advantages. 

Because it captures the strategies used by the player’s, it enables us to 
reason about what players know about each other’s strategies, an issue of 
critical importance in game theory.

For example, a standard assumption made in the game theory literature is 
that  players are rational. To make this precise, we give the following 
definition.
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Definition. (Dominating strategy)

(i) We say that a strategy  σ for player   i   dominates a strategy   σ’

if, no matter what strategy the other players are using, player i gets at 

least as high a payoff using strategy σ as using strategy  σ’ ,  

(ii) we say that a strategy  σ for player i  strictly  dominates a strategy   

σ’ if it dominates the strategy σ’ and  there is some strategy that the 

other players could use whereby  i gets a  strictly higher payoff by 

using  σ’.
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Definition. (a rational player)

(i)  According to one notion of rationality a rational player
never uses a strategy if there is another strategy that dominate it.

(ii) We introduce two propositions rationali for  i = 1, 2,  where 

rationali holds at a point if player’s  i ‘s  strategy at that point is 
not dominated by another strategy.

Comment. For player  1  to know that player  2  is rational 
means that   K1(rational2 )  holds.

The players can use their knowledge of rationality to eliminate 
certain strategies.
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If player 1  knows that player  2  is rational, then he knows that 
she would use the strategy σ12. With this kowledge, σ1 dominates 
σ2 for player 1. 

Thus if player  1  is rational, he would then use  σ1.

Example 6.  Game  G1

In game   G1 , strategy  σ12 dominates all other strategies for 
player  2 , so if player 2 were rational, than she would use   σ12 . 
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Note that if player  1  thinks that player  2  is not rational, it may make 
sense for  1 to use  σ2 instead , since it guarantees a better payoff in 
the worst case.

It follows that if both players are rational, and player  1  knows that 
player  2  is rational, than their joint strategy must be  (σ1 , σ12) and 
the payoff is  ( 3, 4 ).
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Game  2
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How does the game   G2 get modeled in this more refined approach?

• Again, player  1  has two possibile strategies, σ1 ,  and   σ2 .  

• But now player  2  also has two strategies, which we call  σ1’ and σ2’.

• Running   σ1’,  player chooses action   b1,  and running   σ2’,  she 
chooses b2 .  There is no strategy corresponding to  σ12 , since player 2 
does not know what action  player 1  performed at the first step, and 
thus her strategy cannot depend on this action.

• We can define a system   R2´ that models this game and captures 
player’s strategies.
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By way of contrast, even if we assume that rationality is common
knowledge in the game G2 , (assumption that is frequently made by 
game theorists), it is easy to see that neither players  1  nor  2 has a 
dominated strategy, and so no strategy for either player is eliminated 
because of rationality assumption.

Comment.

The above examples show how we can view a context as a description  
of a class of systems of interest.

The context describes the setting in which a protocol can be run, and 
running distinct protocols in the same context we generate different 
systems, all of which share the characteristics of the underlying context.
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Programs
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We now describe a simple programming language, which is still rich 
enough to describe protocols, and whose syntax emphesizes tha fact 
that an agent performs actions based on the result of a test that is 
applied to her local state.

case of
if  t1 do   a1

if   t2 do   a2

...
end case

A (standard) program  Pgi for agent i  is a statement of the form:

where ti are standard tests for agent  i and   a j are actions of agent  
i  i.e. a j  belongs to  ACTi .
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We call such programs  “standard” to distinguish them from the  
“knowledge based” programs to be introduced later on.

A standard test for agent   i is simply a propositional formula over a 
set   Φi of primitive propositions.

Intuitively, once we know how to evaluate tests in the program at the 
local states   Li , we can convert this program to a protocol over Li..

At a local state  l , agent   i nondeterministically chooses one of the 
(possibly infinitely many) clauses in the case statement whose test is 
true at  l , and executes the corresponding action. 

We omit the  case statement if there is only one clause.
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Compatible interpretations.

We want to use an interpretation  π to tell us how to evaluate tests.

We intend the tests in a program for agent   i to be local , i.e. to depend 
only on agent   i’s  local state. 

It would be  inappropriate  for agent’s   i’s   action to depend on the truth 
value of a test that   i   could not determine from her local state.

Definition. (Compatible interpretations)

(i)  We say that an interpretation    π on the global states  in  G is 
compatible with a program   Pgi for agent   i if every proposition 
that appears in   Pgi is local to   i   which means that, if   q appears 
in  Pgi , for any two states   s   and   s’ in   G , such  that  s ~ i s’ , 
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(ii)  If  A  is a propositional formula all of whose primitive propositions 
are local to agent   i , and    l   is a local state of agent   i , then we write

(π, l ) |= A

if  A  is satisfied by the truth assignment  π(s), where  s  =  (se , s1, … , sn)
is the global state   s  = l . 

Comment. Because all the primitive proposition in  Φ are local to  i , it 

does not matter which global state   s we choose, as long as   i’s   local 

state in   s is   l . 

we have
π(s)(q)  =  π(s’)(q) 
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Definition.  (Interpreted Protocols)

Given a program   Pgi for agent i and an interpretation   π compatible with 
Pgi , we define a protocol that we denote   Pgiπ by setting

{ a j  | (π, l ) |=  t j}    if    { j  | (π, l ) |=  t j}  is nonempty
Pgiπ(l) =  

{Λ}    otherwise 

Comment.  Intuitively,   Pgiπ selects all actions from the clauses that 
satisfy the test, and selects the null action if no test is satisfied.

In general, we get a nondterministic protocol,  since more than one test 
may be satisfied at a given state. 
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Many of the definitions for protocols have natural analogues for
programs.

Definition (Joint Programs) 

We define a  joint program  to be a tuple

Pg = ( Pg1, … , Pgn)

where  Pgi is a program for agent   i.

We say that an interpretation   π is  compatible with  Pg  if  π is   
compatible with each  Pgi ,  i = 1, 2, … , n.

From  Pg and   π we get a joint protocol

Pgπ = (Pg1π , … , Pgnπ)



Knowledge in Multi-agent systems V 76

Definition.  (Representing Interpreted Systems)

We say that an interpreted system  I = ( R, π )   represents (resp. , 
is consistent with) a joint program   Pg  in the interpreted context   
( γ , π)  iff   π is  compatible with   Pg  and   I represents  (resp. ,  
is consistent with) the corresponding protocol   Pgπ. 

We denote the interpreted system representing   Pg  in  ( γ , π)  by  
Irep(Pg , γ , π). 

Comment. Of course, this definition only make sense if   π is 
compatible with  Pg. From now on we always assume that this is 
the case.



Knowledge in Multi-agent systems V 77

In such languages, one typically sees constructs as  for, while, or  

if…then…else, which do not have syntactic analogues in our 

formalism.

The semantics of programs containing such constructs depends on the 

local state containig   instruction counter,  specifying the command that 

is about to be executed at the local state (of computation).

Notice that the syntactic form of our standard programs is in many ways 

more restricted than that of programs e.g. in   C  or  FORTRAN.
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The local tests   tj used in a program can then reference this variable
explicitely, and the actions   a j can include explicite assignments to 
the variable.

Given that such simulation can be carried out in our framework, 
there is no loss of generality in our definition of  standard programs.

Since we model the local state of a process explicitely, it is possible 
simulate these constructs in our framework by having an explicite 
variable in the local state accounting for the instruction counter.
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It is easy to see that every protocol is induced by a standard program if 
we have a rich enough set of primitive propositions. 

As a result, our programming language is actually more general than 
many other languages; a program may induce a non-computable protocol.

However, we are interested in programs that induce computable 
protocols.

In fact, standard programs  usually satisfy a stronger requirement; they 
have finite descriptions, and they induce deterministic protocols. 



Knowledge in Multi-agent systems V 80

if  ¬ recack do  sendbit

Similarly, the receiver   R can be viewed as running protocol  BTR

if recbit  do sendack

The sender   S can be viewed as running the following program  BTS ,

Let us return  to the bit-tranmission problem . We saw earlier the 
sender’s protocol.

(Note that if   recack or   ¬ recbit   holds, then, according to our 
definitions, the action   Λ is selected .)  
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Let   BT =  (BTS  , BTR ) . Recall that we gave an interpretation  πbt  

describing how the propositions in  BTS   and   BTR   are to be inter-
preted.

It is easy to see  that  πbt  is compatible with  BT, and that  BTπbt  is the 
joint protocol   Pbt  described in the paragraph on consistent contexts.
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Specifications.

Motivation.  When designing or analyzing a multi-agent system, we 
typically have in mind some property that we want the system to satisfy. 
Very often we start with a desired property and then design a protocol to 
satisfy this property.

For example, in the bit-transmition problem the desired property is that 
the sender communicates the bit to the receiver.
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Thus, a specification can be identified with a class of interpreted 
systems, the ones that are “good ”. 

Definition. (Interpreted system satisfying a specification)

An interpreted system   I satisfies a specification  σ if it is in 
the class  σ i.e.  I is in   σ.

We call this desired property the  specification of the system or 
protocol under consideration. A specification is typically given as a 
description of the “good ” systems.
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Quite often run-based specifications can be desribed by formulas in 
temporal logic (with no modal operators for knowledge).

Definition. (Run-based Systems)

We say that a system satisfies a run-based specification if all its 
runs do.

Comment. Many specifications that arise in practice are of special type 
that we call  run-based i.e. a specification given as a property of runs.



Knowledge in Multi-agent systems V 85

Example1. continued  (the bit-transmission problem again)

A possible specification for the bit-transmission problem is: “the receiver 
eventually receives the bit from the sender and the sender eventually 
stops sending the bit ”. This can be expressed as

The truth of this specification can be decided for each run with no 
consideration of the system in which the run appears.

<> recbit &  <>� ¬ sendbit

Similarly, the run-based property: “in every round every message sent is 
delivered or lost ” can be expressed as

�((sendbit -> (recbit v ¬ recbit)) & (sendack  -> (recack v ¬ recack))
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Knowledge-based Specifications

Motivation. Although run-based specifications arise often in practice, 
there are reasonable specifications that are not run-based.

Example. (Muddy children puzzle)

The natural specification of the children’s behaviour is: “a child says  
‘Yes’ if he knows whetther he is muddy, and says  ‘No’ otherwise”.

This specification is given in terms of the children’s knowledge, which 
depends on the whole system and cannot be determined by considering 
individual runs in isolation.

We view such a specification as a  knowledge-based  specification.
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Unlike run-based specifications, knowledge-based specifications 
specify properties of interpreted systems.

Definition. (Satisfaction of Knowledge-based Properties)

We say that  P satisfies   σ in the interpreted context  ( γ , π) (or is 
correct with respect to σ in  ( γ , π)) , if the interpreted system repre-
senting  P in  ( γ , π) satisfies  σ i.e. , if    Irep( P , γ , π)   is in  σ
(i.e. in the set of  “good” systems).

More generally, we call a specification that is expressible in terms 
of epistemic (and possibly other) modal operators a knowledge-
based specification.



Knowledge in Multi-agent systems V 88

Typically, the contexts in   Γ are subcontexts of a single context   γ . 
We shall consider a stronger concept of correctness.

Definition.  (Stronger Correctness)

We say that a protocol  P strongly satisfies  σ in  ( γ , π ) , or that   P is  
strongly correct with respect to  σ in   ( γ , π ) , if every interpreted 
system that represents   P   in a subcontext   γ’ of   γ satisfies   σ.

Often we are interested in the correctness of a protocol with respect not 
only one  but with respect to some collection   Γ of contexts. This 
collection of contexts corresponds to the various settings in which we 
want to run the protocol.

We know that every system is consistent with  P in context  γ iff it 
represents  P  in some subcontext  γ’ of  γ . 
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Thus,  P is strongly correct with respect to  σ in  ( γ , π )  iff  P  is 
correct with respect to  σ in  ( γ’ , π )  for every subcontext   γ’ of   γ .

There is one important case where correctness and strong correct-
ness coincide: when  σ is a run-based specification. This follows 
from the fact that a system is consistent with a protocol  iff  it is a 
subset of the unique system representing the protocol.

In general, correctness and strong correctness do not coincide. If it 
is the case, one can argue that strong correctness may be too strong 
a notion.
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After all, even if we are interested in proving correctness with respect to 
certain subcontexts of   γ , we are not interested in  all subcontexts of   γ .

In practice, it is often just as easy to prove strong correctness with respect 
to   γ as it is to prove correctness for a restricted set of subcontexts of  γ .

As before, all our definitions for protocols have natural analogues for 
programs. 

Definition.  (Programs satisfying a specification)

We say that a program  Pg  (strongly) satisfies  σ in an interpreted context  
( γ , π) if the protocol   Pgπ (strongly) satisfies σ in the interpreted con-
text  ( γ , π ) .
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Example 1. continued  (the bit-transmition problem)

Let   σ’ be the run-based specification for the bit-transmition problem i.e.

<> recbit &  <>� ¬ sendbit

Above, we described a standard program    BT =  ( BTS , BTR ) for this 
problem. We also described an interpreted context   ( γbt, πbt )  for  BT.

It is easy to see that   BT does not satisfy  σ’ in   ( γbt, πbt ) , for there are 
runs consistent with   BTπ in  γbt  in which the messages sent by  S are never  
received by  R.

However, we are often interested in assuming that the communication chan-
nel is  fair.  Recall that   γbt

fair is obtained  by replacing the condition  True  
in  γbt by  Fair.
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Thus,   γbt
fair differs from   γbt in that it ensures that communication 

delivery satisfies the fairness condition.

It is not hard to verify that  BT does indeed satisfy  σ’ in  (γbt
fair , πbt ).

Since  σ’ is a run-based specification, this implies that  BT strongly 
satisfies  σ’ as well.

Hence as long as the communication channel is fair,  BT works fine.

We can also give a knowledge-based specification for the bit-trans-
mission problem. 

Let σ’’ be the knowledge-based specification:  „eventually S
knows that  R  knows the value of the bit, and  S  stops seending 
messages when it knows that“.  
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We can express  σ’’ as

<>KS KR (bit) & �(KS KR (bit)  ->  ¬ sendbit)

Comment. This specification is more abstract than  σ’,  because it 
does not refer to the manner in which the agents gain their knowledge.

It is easy to see that   BT  satisfies  σ” in  (γbt
fair , πbt ).

BT, however, does not strongly satisfy  σ” in this context. There 
exists a subcontext   γbt

ck of   γbt
fair such that  BT  does not satisfies   

σ” in (γbt
ck , πbt ).
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To prove this, assume that   γbt
ck is the context where it is  common  

knowledge that  S’s  initial value is  1,  and the  communication  channel 
is fair  i.e.  γbt

ck  is like  γbt
fair , except  that  the  only  initial  state  is            

(λ, 1, λ).  

Nevertheless, following   BT,  the sender would send the bit to the recei-
ver in the first round, and would keep sending messages until it receives 
an acknowledgment.  

Clearly  γbt
ck  is a subcontext of  γbt

fair . In this context, the sender knows 
from the outset that the reveiver knows the bit.  

This does not conform to the requirement made in  σ” that if  S knows 
that  R knows the bit, then  S  does not send a message.  It follows that  
BT  does not satisfy  σ” in  (γbt

ck , πbt ). 
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An advantage of  σ” is that it can  be satisfied without the sender     
having to send any message in contexts such as  (γbt

ck , πbt )  in which 
the value of the initial bit is a common k nowledge.

Note that the specification  σ” is not run-based. To verify that the 
condition    <>KS KR (bit)   holds, we need to  consider the whole 
system, not just a run in isolation.

Knowledge-based specifications such as  σ” are quite important in 
pract-ice. If a system satisfies  σ”, we know that in a sense no 
unnecessary mes-sages are sent.

This is an information we do not have if we know only that the 
system satisfies  σ’.


