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Aplication:

Games and Message-Passing Systems  
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Game Trees.

The goal of game theory is to understand games  and how 
they should be played.  To a game theorist, a game is an 
abstraction of a situation where players interact by making 
“moves”. Based on the moves made by the players, there is 
an outcome, or payoff, to the game.

It should be  clear that standard games such as poker, chess, 
and bridge are games in this sense. For example, the “moves”
in bridge consist of bidding and playing the cards.

There are rules for computing how many points each side 
gets at the end of a hand of bridge. This is the payoff.
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Standard economic interactions such as trading and 
bargaining can also be viewed as games, where players 
make moves a receive payoffs.

Games with several moves in sequence are typically 
described by means of a game tree.

We shall illustrate it by a game tree of Game 1.
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Game  1
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In the Game 1, there are two players, 1 and 2, who 
move alternately. Player 1 moves first, and has a choice 
of taking action  a1 or    a2 .
This is indicated by labeling the root of the tree with a  1, 
and labeling the two edges coming out of the root with  
a1  and  a2 . 
After player 1  moves, it is player 2’s  turn.  In Game 1, 
we assume that player 2  knows the move made by play -
er 1 before she moves. At each of the nodes labeled with a 
2, player  2  can choose between taking action  b1 or  b2 .  

In general,  player 2’s set of possible actions after player 1 takes the action a1 
may be different from player’s 2  actions after player 1 takes the action  a2.

In general,  player 2’s set of possible actions after player 1 takes the action a1 
may be different from player’s 2  actions after player 1 takes the action  a2.
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After these moves have been made, the players receive a 
payoff. The leaves of the tree are labeled with the payoffs.

In the Game 1, if player 1 takes action  a1  and player 2 
takes action  b1 , then player 1  gets a payoff of  3 ,  while 
player 2  gets a payoff of  4  (denoted by the pair  (3, 4)). 

A play of the game corresponds to a path in the game tree,  
i.e. it is a complete sequence of moves by the players from 
start to finish.
It should be clear, that at least in principle, chess could also be described by a 
game tree. The  nodes represent board positions, and the leaves of the tree 
represent positions where the game ended. If we suppose that all games are 
played to the end, then the moves at each node are the legal chess moves in 
this position. There are only three possible outcomes: a win for White (player 1), 
a win for Black (player 2, or a draw. The plays in this game tree correspond to 
the possible (complete) games of chess.

It should be clear, that at least in principle, chess could also be described by a 
game tree. The  nodes represent board positions, and the leaves of the tree 
represent positions where the game ended. If we suppose that all games are 
played to the end, then the moves at each node are the legal chess moves in 
this position. There are only three possible outcomes: a win for White (player 1), 
a win for Black (player 2, or a draw. The plays in this game tree correspond to 
the possible (complete) games of chess.
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The Game 1 represented by its game tree is an example of 
a game of  perfect information . Every event relevant to 
the game takes place in public.

A player knows all the moves that have been made before 
she moves. Chess is another example of a game with 
perfect information. By way of contrast, bridge and poker 
are not games of perfect information.

One of the key issues studied by game theorists is how the 
information available to the players when they move 
affects the outcome of the game. Game theorists are inter-
ested mainly in games where agents do not have perfect 
information.



Knowledge in Multi-Agent Systems 
IVc

9

Game  2
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The game tree for the Game 2  is identical to the game tree for 
the Game 1, except that the two nodes where player 2 moves 
are enclosed by an oval. This indicates that the two nodes are 
indistinguishable to player  2, or, as the game theorists would 
say, they are in the same information set.

This means that when player  2 makes her move in this game, 
she does not know whether player  1 choose action  a1 or  a2 .

In general, game theorists use the information set to represent 
the information that a player has at a given point in the game.
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It is assumed that                                              .          

(a)  a player always knows when it is her turn to move,  .          

(b)  player  i has the same choices of actions at all the  nodes 
in her information set.  

By  (a)  there cannot be two nodes in player’s   i information set, such that 
player  i is supposed to move at one of the nodes and not at the other.

(b)  says that it does not make sense for a player to be able to perform different 
actions at nodes she cannot distinguish. As we can see from the game tree for 
the Game 2, the set of actions from which player 2 must choose is identical at 
the nodes where she moves. In contrast to Game 1, where the set of possible 
moves did not have to be identical, in our example they do.

By  (a)  there cannot be two nodes in player’s   i information set, such that 
player  i is supposed to move at one of the nodes and not at the other.

(b)  says that it does not make sense for a player to be able to perform different 
actions at nodes she cannot distinguish. As we can see from the game tree for 
the Game 2, the set of actions from which player 2 must choose is identical at 
the nodes where she moves. In contrast to Game 1, where the set of possible 
moves did not have to be identical, in our example they do.
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Perhaps the most obvious way of modeling Game 1 is to 
take each play as a run. Since we assume that  G1  is a 
game of perfect information, what happens at each state 
must be reflected in the player’s states.

• Each player’s initial state has the form  <>, representing 
the fact that nothing has yet happened.

• After player 1’s move, the local states of both players 
encode the move the player  1  has made. Thus the local 
states of both players have the form  < ai >, for  i = 1, 2.

•Finally, after player 2’s move, we assume that both 
player’s states include player 2’s move, and the payoff.
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We can ignore the environment’s state here. We presume 
that the player’s local states include all the information of 
interest of us. Thus we take the environment’s state to be λ .

We call the resulting system  R1 .

We remark that in a more general settings, game theorists view “nature”, or 
the environment, as another player in the game. In this case it may be 
appropriate to have a more complicated environment’s state.

We remark that in a more general settings, game theorists view “nature”, or 
the environment, as another player in the game. In this case it may be 
appropriate to have a more complicated environment’s state.

Note that as we have described  R1 , both players have 
identical local states at all points. This is a formal count-
erpart to our assumption that  G1  is a game of perfect 
information.
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It is easy to show that the moves made, as well as the 
payoffs received by the players, are common knowledge 
once they take place.

In the games of perfect information there is very little uncertainty, which leads 
to such a simple model. We remark that even in games of perfect information 
such as this one, the players usually follow particular strategies which are not 
necessarily common knowledge. Defining strategies and capturing them in the 
model will be one of the subjects treated later.

In the games of perfect information there is very little uncertainty, which leads 
to such a simple model. We remark that even in games of perfect information 
such as this one, the players usually follow particular strategies which are not 
necessarily common knowledge. Defining strategies and capturing them in the 
model will be one of the subjects treated later.

What system does   G2   correspond to ? 

• Again, we assume that each play corresponds to a run, 
and the player’s initial states have form  <>.

• Just as in  R1  , we can also assume that player 1’s local 
state includes her move after she made it. We do not want
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player 2’s local state to include this information.

• Nevertheless, player 2’s state must encode the fact that 
player 1 has moved.

• For definiteness, we assume that immediately after 
player 1’s move, player 2’s state has the form  <move>, 
which indicates that it is player 2’s turn to move.

• We assume that after player 2’s move both player’s 
states include the move and the payoff.

This gives us the system  R2  . 
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The key difference between  G1  and  G2  is that player 2 does not know what 
player 1’s is after she has made it. Player 2’s state must be different before player 
1 moves and after player 1 moves, for otherwise she would not know that it is her 
turn to move. Essentially, the  <move>  is just an indication that it is player 2’s 
move.

The key difference between  G1  and  G2  is that player 2 does not know what 
player 1’s is after she has made it. Player 2’s state must be different before player 
1 moves and after player 1 moves, for otherwise she would not know that it is her 
turn to move. Essentially, the  <move>  is just an indication that it is player 2’s 
move.

In the case that player 2’s local state at the end of the game 
G2 includes her move and the payoff  (for both players), 
player 2 may discover what player 1’s move was. In part-
icular, it is true in our setting, where the payoffs are differ-
ent for every play.
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It is obvious at this point that we can capture a situation in 
which players are not informed about the payoffs immed-
iately, or perhaps that each player is informed of her or his 
own payoff and not the other’s. All we need is to modify 
what goes into a players’local state.

The systems  R1  and  R2  correspond to games  G1  and  G2  
in that  each play of the game is captured by one of the runs 
and every run captures a possible play of the game.

Of course, these systems are not the only possible represent-
ations of these games. For example, we could have used the 
information sets as local states of the agents. Another possib-
le representation includes a representation of the strategy of 
the players.
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Synchronous Systems

A standard assumption in many systems is that agents have 
access to a shared clock, or that actions take place in rounds 
or steps, and agents know what round it is at all times.

Thus, it is implicitely assumed that the time is common 
knowledge, so that all the agents are running in synchrony.

This assumption has already arisen in some of the systems we have consider-
ed. In particular, we implicitely made this assumption  in our presentation of the 

muddy children puzzle and of the two games  G1 and  G2 . 

This assumption has already arisen in some of the systems we have consider-
ed. In particular, we implicitely made this assumption  in our presentation of the 

muddy children puzzle and of the two games  G1 and  G2 . 

In computer science, many protocols are designed so that 
they proceed  in rounds where no agent starts round  (m+1) 
before all agents finish round  m .
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How can we capture synchrony in our framework? Since an 
agent’s knowledge is determined by his local state, his know-
ledge of the time must be encoded somehow in the local state. 
This global clock need  not measure “real time”.

Definition. (Synchronous Systems)

(i) We say that  R is a synchronous system if for all agents and 
points  (r,m)  and  (r’,m’)  in  R,  if  (r,m)  ~i (r’,m’),  then      
m = m’.

(ii) We say that an interpreted system   I = (R, π)  is 
synchronous if   R is.
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(i) expresses our intuition that in a synchronous system, 
each agent   i knows  what time it is: at all points that   i
considers possible at the point  (r,m), the time (on the sys-
tem’s shared clock) is   m .

The time is encoded in each agent’s local state.

In particular, this means that  i can distinguish  points in 
the present from points in the future;  i has a different 
local state at every point  (r,m)  in a run  r .
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Examples. (a) the systems   R1  and  R2 corresponding to 
the games  G1  and  G2  and are indeed synchronous .          

(b) Intuitively, the muddy children puzzle should be model-
ed as a synchronous system. (We shall show it later).

(c) On the other hand, the system  Ikb  that we used to model 
the Knowledge base is not synchronous. Synchrony was not 
a major issue in that case.

We could make it synchronous, either by adding a clock to the Knowledge base’s 
and Teller’s local states, or assumng that the Teller tells the Knowledge base a 
new formula at every step. In the latter case the number of formulas in the Know-
ledge base’s and Teller’s local states encodes the time.

We could make it synchronous, either by adding a clock to the Knowledge base’s 
and Teller’s local states, or assumng that the Teller tells the Knowledge base a 
new formula at every step. In the latter case the number of formulas in the Know-
ledge base’s and Teller’s local states encodes the time.
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Perfect Recall

According to our definition of knowledge in a system, an 
agent’s knowledge is determined by his local state. 

Our definition admits the following two possibilities:          

(i) an agent’s local state may “grow” to reflect the  new know-
ledge she acquires, while still keeping track of all the old 
information she had. Our definition does not requires this.

(ii) On the other side are models where it is possible that the 
agent’s  i information encoded in her local state  ri (m) at time  
m in run  r  no longer appears in ri (m + 1). 
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There are often scenarios of interest where we want to model 
the fact that certain information is discarded. 

In practice, an agent may simply not have enough memory    
to remember everything she had learned.

On the other hand, there are many instances where it is natural 
to model agents as if they do not forget, that is, they have 
perfect recall . 

Perfect recall is sufficiently common in applications to 
warrant a definition and to be studied as a separate property of
systems.
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Perfect recall means, intuitively , that an agent’s local state 
encodes everything that has happened (from that agent’s 
point of view ) thus far in the run.

Among other things, this means that the agent’s state at 
time (m + 1) contains at least as much information as his 
state at time  m . In other words, an agent with perfect 
recall should, essentially, be able to reconstruct his com-
plete local history.

In the case of synchonous systems, since an agent’s local 
state changes with every tick of external clock, this would 
imply that the sequence <ri (0), ... , ri (m)> must be encoded 
in  ri (m + 1).
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In systems that are not synchronous,  agents are not neces-
sarily afected by the passage of time on the external clock. 
Thus, an agent can sense that something happened only  
when there is a change in her local state. This motivates the 
following definitions.

Definition. (Perfect recall)

(i) Let agent  i’s local state sequence at the point (r,m) be 
the sequence of local states she has gone through in run  r
up to time  m , without  consecutive repetitions.

(ii) We say that  agent  i  has perfect recall in system  R if 
at all points (r,m) and (r’,m’) in  R , if  (r,m)  ~i (r’,m’), 
then agent  i has the same local state sequence at both (r,m) 
and (r’,m’). 
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(iii) We say that a system   R has perfect recall, if for 
every agent  i ,  ri (m) encodes  i’s  local state sequence in 
that, at all points where  i’s  local state is   ri (m) , she has 
the same local state sequence.

Example. Assume that from time  0  through time  4  in 
run  r agent   i has gone through the sequence            

<si , si , s’i , si , si >                                                  
of local states, where  si and s’i are different .            

We model this by her local state sequence                       
<si , s’i , si  >                                             

at  (r, 4). 
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Thus, proces  i’s  local state sequence at a point (r,m) 
describes what has happened in the run up to time  m , 
from   i’s  point of view.

According to the definition, agent  i has perfect recall if 
she “remembers” her local state sequence at all times. 

Note that the systems  R1 and R2 corresponding to 
the games  G1 and G2   assume perfect recall, since 
the players keep track of all the moves that they make.

Our representation   Ikb  of knowledge bases assumes 
perfect recall as well.
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In fact, perfect recall is a standard assumption made by 
game theorists.

As we shall see, perfect recall is an assumption made, 
either explicitely or implicitely, in a number of contexts.

Time and ignorance in perfect recall systems

One might expect that in systems where agents have perfect 
recall, once an agent knows a fact   A at a point  (r,m) she 
will know it at all points in the future. That is, we might 
expect that                                                     

Ki A ->�Ki A 

But this need not be true about some specific statements 
talking about time.
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One problem arises with statement talking about the situ-
ation “now”, such as the statement   A saying “it is cur-
rently time  0”. At time  0 , an  agent  i may know  A  (say, 
if she has access to a clock) but agent  i will certainly not 
always know that it is time 0.

Another problem comes from knowledge about ignorance. 
Consider the formula  ¬ Ki p   saying  “the agent   i does not 
know the fact   p” . Then it is not hard to construct a system 
where agents have perfect recall such that agent   1  initially 
does not know   p , but she later learns   p .

Thus, we have  ¬ K1 p ,  and so   K1 ¬ K1 p  at time 0 , but by 
assumption,  K1 ¬ K1 p  does not hold at all times in the future.
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Hence, certain temporal statements and knowledge about 
the ignorance does not persist in the presence of perfect 
recall.
Nevertheless, the intuition that in the presence of perfect 
recall, once the agent knows   A , then she never forgets   A
is essencially correct. Namely, it is true for all stable  for-
mulas.    

Definition. (Stable formulas)

We say that a formula   A is stable with respect to the 
interpreted system   I,  if once  A  is true it remains true in 
future. Hence  A is stable if we have   I |= A ->  �A .
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We shall remember the following positive and negative 
facts.
Proposition 1.
Suppose that  A and  B are stable, then

(i)  (A & B)  and   (A v B)  are stable.                                 

(ii)  If  I is a system with perfect recall , then  Ki A and   
CG A  are stable. Thus, in a system with perfect recall, if an 
agent knows a stable formula at some point, then she 
knows it from then on. And similarly for common 
knowledge.                                                     

(iii) If  in addition the system is synchronous, then  DG A  is 
stable, as well. 
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Proposition 2.

(i) The formula  Ki A need not be stable if   A is not 
stable even if assuming perfect recall and synchrony.

(ii) There is an interpreted system where agents have 
perfect recall and a stable fomula  A  such that   DG A is 
not stable. (Thus synchrony is necessary in the statement 
(iii) of Proposition 1.)

While the proof of Proposition 1 is not complicated, the 
proof of Proposition 2 is more demanding. We shall not 
give the proofs here.
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How reasonable is the assumption of perfect recall ?  This 
depends on the application and on the model we choose.

It is easy to see that perfect recall requires every agent to 
have a number of local states at least as large as the num-
ber of distinct local state sequences she can have in the 
system .

• This fact is acceptable in systems where agents change 
state rather infrequently.

• On the other hand, if we consider systems where there are 
frequent state changes or look at systems over long intervals 
of time, then perfect recall is an unreasonable assumption. 
In such situations, perfect recall may require a rather large 
(possibly infinite) number of states.
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The simple protocol of the bit-transmition problem 
(Example 1) is one in which the Sender  S  and the Receiv-
er   R undergo very few state changes. 

The states of  S and  R do  not reflect every separate 
sending or receiving a message. The states change only 
when a message is received  for the first time.

According to our definitions, both  S and  R have perfect 
recall in this case, despite the fact that neither   S nor   R
remember how many times they have received or sent 
messages.

The point is that  S and  R  recall everything that was ever 
encoded in their states.
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Benefits of the assumption of perfect recall. Frequently, 
during the design phase of a multi-agent system, we are at a 
loss what to include in the agent’s local state . The problem 
is aleviated, if we simply include to the state record all 
events that the agent is involved in and assume that agents 
have perfect recall.

If we can gain a reasonable understanding of the system 
under the assumption of perfect recall, we can then consider 
to what extent forgetting can be allowed without invalidat-
ing our analysis.
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Message-Passing Systems
In many situations, particularly when analyzing protocols run 
by processes in a distributed system, we want to focus on the 
communication aspects of the systems. In what follows, we 
shall call agents processes.

We introduce the notion of a  message-passing system , where 
the most significant actions are  sending  and  receiving mess-
ages and  internal actions of processes.

The main ingrediences of message-passing systems are 

• MSG             the set of messages common for all processes,

• Σi                            the set of initial states for each process   i ,

• INTi                      the set of internal actions for each process   i ,
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the names of events send (µ, j,i), receive (µ, j,i) or int (a,i) , 
where  µ ε MSG and  a ε INTi . We assume that these names 
correspond to events as follows:

send (µ, j,i)                          “message  µ is sent to   j  by  i”, 
receive (µ, j,i)          “message  µ is received from   j by  i”, 
int (a, i) “internal action  a is performed by  i ”.

As we are interested in the communication aspects of the 
system, the details of the internal actions are not relevant 
here.
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We shall denote it by the set                                   
{send (µ, j,i),  receive (η, k,i), int (a, i)}            (1)

In a run  r at a point   r(m)  a process   i may perform se-
veral actions. 

For example,  process   i performs the actions of sending 
the message   µ to process   j , receives the message   η
from process   k and also performs some internal action   a .  

Now we can define the concept of history of a process from 
the start to the point  (r,m) .
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History of the process   i is a sequence of sets such as  (1). 

At the point   (r,0) , process  i ’s   history is a sequence con-
sisting from the singleton set containing only i’s initial state.  

If process   i performs some actions at the point  (r,m) , for 
example, those in the set  (1), then the   i ‘s  history at the 
point  (r,m) is the result of appending the set  (1) , hence             

{send (µ, j,i),  receive (η, k,i), int (a, i)}                     
to the  i ‘s  history at  (r,m - 1).

If  i  performs no action in the round   m , then its history at 
(r,m)  is the same as its history at  (r,m - 1) .

Definition. (History)
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Note that we are distinguishing performing no action from 
performing some kind of null action to indicate that time 
passed. A null action would be modeled as an internal 
action.

By abuse of terminology, in message-passing systems, 
we speak of names                                               

send (µ, j,i),  receive (η, k,i)  and   int (a, i)       
as events.

Definition. (Occurence of an event)

We say that an event  occurs  in round   (m + 1)   of 
run  r  if it appeares in some process’s history in       
(r,m +1) , but  not in any process’s history in  (r,m).  
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Aumann structures.Aumann structures.

In message-passing systems, the process’s local states at any 
point is its history. To define the concept of message passing 
system, we need to impose some consistency conditions on 
global states.

Definition. (Message-passing systems   (m.p.s))

Given sets  Σi  of initial states and   INTi of internal actions 
for processes  1, ... , n , and a set  MSG  of messages common 
to all processes, we define  a message-passing system (over Σi 
INTi and  MSG) to be a system such that for each point (r,m) , 
the following constraints are satisfied. 

MP1.  ri(m)  is a history over Σi , INTi and  MSG,
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MP2. for every event   receive (µ, j,i)  in run  r there exist a 
corresponding event  send (µ, i, j)  in  rj(m) , and

MP3.  rj(0) is a sequence with only one member: singleton 
set containig the process’s   i initial state and             
rj(m+1) is either identical to  rj(m)  or the result of 
appending a set of events to  rj(m). 

We have ignored the environment’s state since it is defined in 
a different way and its details are not relevant to the con-
straints  MP1 to MP3.                                           
The local state of environment become more important when 
considering protocols.
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Assuming  MP1 to MP3, we ensure that processes have 
perfect recall since local state of each process is its history.

In practice, we may want to add further requirements:

(i) reliability

(ii) keeping the order of messages

(iii) synchrony

(iv) avoiding sleeping processes

(v) limited time for message delivery
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• reliability makes communication guaranteed : every 
message sent is eventually received. We can express it by 
the following constraint.                                       
MP4  for all processes  i , j , and all points (r,m) , if       
send (µ, j,i)  is in  ri(m) , then there exists    m’ > m   such 
that  receive (µ, i, j)  is in   rj(m’) ,

• keeping order guarantees that messages arrive in the 
order in which they are sent,

• synchrony forces   ri(m) ri(m +1)  for all  i , i can then 
compute the time from its history.

• avoiding sleeping forces each process to take some 
action once every  k rounds.

≠
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• limited time delivery requires that messages arrive in   k
rounds.

Fortunately, the model can capture a wide range of as-
sumptions quite easily.

Asynchronous message-passing systems (a.m.p.s)

Possible reasons of asynchrony

• little or no information about time (no global clock),

• a process may suddenly slow down relative to other 
processes,

• no upper bound on message delivery.
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We consider asynchronous systems, where we assume that

• processes may work at arbitrary rates relative to each 
other,

• there is no bound on message delivery times.

We proceed much as in the previous section. As before, we 
assume that each process’s local state consists of its 
history.

We use to some extent the local states of the environment. 
As in the case of  bit-transmition problem, the environ-
ment’s  local state records the events that have taken place 
so far and the order in which they occured.   
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We make the following simplifying assumptions:

(i) in each round, at most one event takes place for each 
process,                                                        
(ii) for each process, all the events in its history are distinct.

It follows from (i) that now a history is a sequence start-
ing with an initial state followed by singleton sets  {e} 
consisting of the only event that took place. It is natural to 
replace the singleton by the event  e itself. 

The assumption (i) is reasonable if we model time at a 
sufficiently fine level of granularity.  
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The assumption (ii) makes the exposition much easier if we 
do not have to distinguish different occurences of the same 
event in a given run. It helps if we want to consider occur-
ences of events and their temporal relationships.

In particular, (ii) forces each process never to perform the 
same action twice in a given run. 

(We can dispose with this constraint if we simply change 
our representation of events in the history replacing the 
event  e by the ordered pair   <k,e>, where  k indicates that 
it is   kth  occurence of event   e  in the given run.)
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Preliminary knowledge and its elimination. 
In any message passing system, a process knows at least 
what is in its history. It may well know more, in particular if 
it has some a priory knowledge. For example, in a system 
where it is common knowledge that all processes perform 
an action at every round, a process can certainly deduce  in-
formation made by other processes from amount of progress 
it has made itself. 

To eliminate all such additional knowledge, we consider 
possible  all runs consistent with the assumption  MP1 to 
MP3. 

To make it precise, we use the following definition.
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Definition. (Prefixes and prefix-closed sets of histories)

Recall that in message-passing systems (synchronous or 
asynchronous) the local state of a process  i in the point  
(r,m) is its history, hence a sequence of sets consisting of 
events that took place in the corresponding step.

(i) We call a prefix of a history  h any non-empty init-
ial sequence of  h.

(ii) We say that a set  V of histories is  prefix-closed if 
whenever   h is a history in  V , then every prefix of   h
is also in  V.
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Definition. (Asynchronous message-passing system)

Let   V1 , ... , Vn be prefix-closed sets of histories for proces-
ses 1 , ... , n respectively. 

Let   R(V1 , ... , Vn)  be the set of all runs satisfying  MP1, 
MP2,  and  MP3  such that all of process i ’s  local states are 
in  Vi .

We define an  asynchronous message-passing system (a.m.p. 
system for short) to be one of the form   R(V1 , ... , Vn)  for 
some choice of   V1 , ... , Vn .

We shall see that this definition requires that with each run  r  
the system contains many other runs that can be constructed 
from   r .
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Remark. Why there are no reliable a.m.p. systems.
It seems that we could add  MP4 to the definition of asyn-
chronous system in order to guarantee reliability. The 
following example shows that an a.m.p. system in which 
communication takes place can never be reliable.

Example 1. Suppose that   R(V1 , ... , Vn)  is an a.m.p. system 
that includes a run  r such that   i sends   j the message  µ
in round m of   r . It can be shown that then the system must 
contain another run  r’ that agrees with  r  up to the begin-
ning  of round   m , process  i still sends  µ to  j in round   m
of   r’, but  j never receives  µ .

It folows that if at least one message was sent, the a.m.p. 
system cannot be reliable.
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The following example illustrates the fact that in a.m.p sy-
stems every run  r induces a number of other runs related 
to  r .

Example 2. Suppose  r ε R and  r*  is the run in which all 
events in  r are “stretched out by factor of two. Thus, in  r* , 
all processes start in the same initial state as in  r , no events 
occur in odd rounds of  r*, and, for all  m , the same events 
occur in round  2m of run  r* as in round  m of run  r . 
Hence for all times  m, we have  r*(2m) = r*(2m +1) = r(m).

It is easy to check that  r* satisfies conditions MP1-3 (since  
r does) so  r* must also be in  R.

Similarly, any run that is like  r except that there are arbitra-
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ry long “silent intervals” between the events of   r is 
also in  R . 

This shows that in a precise sense time is meaningless in 
a.m.p. systems. 

To make possible a closer analysis of events, we define 
a notion of  potential causality between events. This is 
intended to capture the intuition that event  e might ha-
ve caused event  e’. In particular, we mean by this that  
e necessarily occured no later than  e’.
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Definition. Potential causality.

(i) For events  e  and  e’ in a run  r , we write  e -r-> e’ if 
either  e’ is a receive event and  e is the corresponding 
send event,  or                                                    
for some process  i , events  e, e’ are both in  i ‘s history 
at some point  (r,m) and either  e = e’ or  e comes earlier 
in the history.

(ii) we shall use the same symbol for the transitive clos-
ure of the above defined relation.
Note that  -r-> is an anti-symmetric relation, we cannot 
have  e -r-> e’ and  e’ -r-> e  unless  e = e’. However, 
this would not be the case if we allowed an event occur 
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more than once in a history.  The following result makes 
precise the degree to which an a.m.p.s. is asynchronous.

It says that the potential causality relation  -r->  is the 
closest we can come in a.m.p. system to define a notion 
of ordering of events. Even if processes combine all 
their knowledge, they could not deduce any more about 
the ordering of events in run  r than is implied by  -r-> .

Notation. We assume that for each pair of events  e , e’, 
Prec(e,e’) is a primitive proposition in  Φ. We say that 
the interpretation of these propositions in the interpreted 
a.m.p. system   I = (R, π) is standard if   
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π(r(m))(Prec(e,e’)) = true                       

exactly if e , e’occur by round  m of  r , and  e occurs no later 
than  e’ in r.  The definition of  π is correct, since we assum-
ed that the environment keeps track of the events that have 
occured.

Proposition 1. Let  G be the group of all processes,  R  be an 
a.m.p. system and assume that the interpretation of  Prec(e,e’) 
in  I = (R, π) is standard. Then  

(I, r, m) |= DG (Prec(e,e’))  iff  e, e’both occurred by round  m
and  e -r-> e’.



Knowledge in Multi-Agent Systems 
IVc

59

Knowledge Gain in A.M.P. Systems

There are even closer connections between the potential 
causality ordering and knowledge. As we shall see, the 
relationship between knowledge and communication is 
mediated by the causality relationship  -r-> . 

Roughly speaking, the only way for process  i to gain 
knowledge about process  j is to receive a message. 
Although this message does not have to come directly from 
process  j , it should be the last in a chain of messages, the 
first of which was sent by  j.
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Definition. Process chains

Suppose that   i1 , ... , ik is a sequence of processes, with 
repetitions allowed,  r is a run and   m < m’.

(i) We say that <i1 , ... , ik> is a process chain in  (r, m..m’) 
if there exist events  e1 , ... , ek in run  r such that event  e1  
occurrs at or after the round   m + 1  in run  r , event   ek oc-
currs at or  before round   m’, event  ej  is in process   ij‘s  
history for  j = 1, 2, ... , k ,  and    e1 -r-> e2 ... -r-> ek .

(ii) We say that   <i1 , ... , ik >  is a process chain in   r if it is 
a process chain in  (r,m..m’) for some  m < m’.
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Example 1. Suppose that in run  r , process  1  sends the 
message  µ to process  2  in round  1, process  2  receives  µ
in round  2, process  2  sends the meassage  µ’ to process  1  
in round  3, and  µ’ is received by process  1  in round  3 .

Then  <1,2,2,1> is a process chain in  (r,0..3)  (as is (1,2,1)).

This example suggests that process chains are intimately 
linked to the sending and receiving of messages. It is easy 
to see that  <1,2,1>  is a process chain in run  r corres-
ponding to events  e1, e2 , e3 that occur in rounds            
m1, m2, and  m3 , respectively then there must have been a 
message sent by process  1  between rounds  m1 and m2
inclusive (i.e. at or after  m1, and at or before round  m2 )
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to process  2  and a message sent by process  2  between 
rounds   m2 and m3  inclusive.  More generally, we have 
the following lemma

Lemma 1. Suppose that  <i1 , ... , ik> is a process chain in 
(r, m...m’), with   ij ij+1 , for  1 < j < k - 1. Then there 
must be a sequence of messages   µ1, ... , µk-1 sent in  r
such that  µ1,  is sent by   i1, at or after round  m + 1, and  
µj, is sent by  ij strictly after  µj-1 is sent by  i1-1 for              
1 < j < k-1.

In particular, at least  k-1 messages must be sent in run  r
between rounds  m + 1  and  m’ inclusive. 

≠
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Note that it is not necessarily the case that   µj is sent by 
ij, to  i1+1, there may be a finite sequence of messages in 
between. The next definition is the key to relating 
knowledge and communication.

Definition. If  i1 , ... , ik is a sequence of processes, we 
write  (r,m) ~ i1 , ... , ik  (r’,m’) , and say that  (r’,m’)  is
(i1 , ... , ik)-reachable from (r,m),  if there exist points 
(r0,m0), ... , (rk , mk)  such that   (r,m) = (r0,m0),         
(r’,m’) = (rk , mk)  and   (rj-1 , mj-1) ~ j (rj , mj)  for              
i = 1, ... , k. 
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Thus, (r’,m’)  is  (i1 , ... , ik)-reachable from  (r,m)  if at the 
point   (r,m)  process  i1 considers it possible that  i2
considers it possible ... that  ik considers it posible that   
(r’, m’) is the current point.

Despite the notation, the relation of  (i1 , ... , ik)-reachability 
is not in general an equivalence relation if  k > 1.

Lemma 2. Let  R be an a.m.p. system, let  r be a run in  R, 
and let  m < m’. For all  k > 1 and all sequences   i1 , ... , ik  
of processes, either  (r,m) ~i1, ... ,ik (r,m’) or   <i1 , ... , ik >  is 
a process chain in (r, m..m’). 
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Proof. We proceed by induction on  k.  If  k = 1  and  < i1> 
is not a process chain in  (r, m..m’), then it must be the 
case that no events occur in process   i1’s  history in  r be-
tween rounds  m + 1 and  m’ inclusive. It follows        
(r,m) ~i1 (r,m’), as desired. 

Suppose  k >1  and  < i1 , ... , ik> is not a process  chain in 
(r, m..m’). Let  e* be the last event in  k’s  history at the 
point  (r,m’). We now define a new run  r’. Intuitively, r’
consists of all the events that occurred in  r up to and 
including round  m, together with all the events that 
occurred in  r  after round  m that potentially caused  e*.

The run  r’ agrees with  r up to time  m  (so that we have 
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r’(m”) = r(m”)  for  0 < m”< m).  For  m < m” < m’ and 
each process  i , we define  ri‘(m”) to be the sequence 
that results from appending to ri‘(m) (in the order) all 
events  e in  ri(m”)  that occurred between rounds  m+1 
and  m” inclusive such that  e -r-> e*. 

Finally, we take r’(m”) = r(m’)  for  m” > m’ , i.e. no 
event takes place after time  m’.  

It is easy to check that   ri’(m”)  is a prefix (not neces-
sarily strict) of  ri(m”) for all   m” > 0 , because if  e’
occurs in   ri(m”)  before  e and  e -r-> e* then we also 
have e’ -r-> e*. 
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It is now not hard to show that

(1)  r’ ε R i.e. to check that   r’ satisfies  MP1-3,             
(2)  (r’, m’)  ~ik (r,m’) ,                                                       
(3)  (r,m) ~i1 (r’, m) ,  and                                                       
(4)  <i1 , ... , ik-1 > is not a process chain in  (r’, m..m’).

It follows from  (4)  and the induction hypothesis that      
(r’, m) ~i1, ... ,ik-1 (r’, m’)                       

Applying (2) and (3) we immediately get                         
(r,m) ~i1, ... ,ik (r,m’)                                         

as desired. 

The two conditions in Lemma 2 are not mutually exclusive.
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It is possible to construct a run  r such that, for example, 
<1,2>  is a process chain in  (r, 0 .. 4)  and  (r,0) ~1,2 (r,4).

Theorem 1.
Let  r be a run in an interpreted a.m.p. system   I , and assu-
me that  m < m’.
(a) If  (I, r, m) |= ¬ Kik A  and  (I, r, m’) |= Ki1 ... Kik A , then 
<i1 , ... , ik >  is a process chain in  (r, m..m’). 

(b) If  (I, r, m) |= Ki1 ... Kik  A  and  (I, r, m’) |= ¬ Kik A , then 
<i1 , ... , ik >  is a process chain in  (r, m..m’). 

The theorem essentially says that processes can gain or loose
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knowledge only by sending and receiving messages.

Proof. We prove  (b) by contradiction, the proof of  (a) is 
similar. Suppose that  <i1 , ... , ik > is not a process chain 
in  (r, m..m’).  By lemma 2, we have  (r,m) ~i1, ... ,ik (r,m’).

Thus, by definition, there are points  (r0,m0), ... , (rk ,mk)  
such that  (r,m) = (r0,m0), (r,m’) = (rk ,mk)  and for            
j = 1, ... , k we have  (rj-1, mj-1) ~j (rj , mj ).  

We can now show by induction on  j , that for  j = 1,..., k
(I, rj , mj) |= Kij ... Kik  A . In particular, it follows that     
(I, r, m’)  |= Kik  A , a contradiction.
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Part (a) of Theorem 1 seems quite intuitive: knowledge 
gain can occur only as a result of receiving messages. 
Part (b) may seem somewhat counterintuitive: 
knowledge loss can occur only as the result of sending 
messages. 

Example 2. Suppose that process 1 sends process 2 a mess-
age  “Hi”, and that this is the first message sent from pro-

Individual processes typically can lose                         
(1) “positive” knowledge, and                                         
(2) knowledge of their ignorance.                               
We give a rough image how it can happen in the fol-
lowing example.
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More deeply nested “positive” knowledge can be lost as 
well. This needs but a more complicated example. It can 
be illustrated by a number of locks put by different pro-
esses on a database.

cess 1 to process 2. Before process 1 sends the mess-
age, 1 knows that 2 has not received any message from 
it. After it sends the messages, it loses this knowledge. 

Losing  knowledge of ignorance can be illustrated by the 
formula  p saying “the value of variable  x is  0”, where  x
is a variable local to process 3. Suppose that  (I, r, 0) |= ¬ p . 
Clearly   ¬K1 p since process 1 cannot know a false fact.
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By a lenghty computation using introspection axioms 
and some assumptions on the run  r it is possible to 
show that at a later point   K2K1 p and consequently K1 p 
holds. 

On the other hand, the following theorem shows that 
common knowledge can neither be gained nor lost in 
a.m.p. systems.

Theorem 2.

Suppose  I is an interpreted a.m.p. system,  r is a run in  I , 
and  G is a group of processes with  |G| > 2. Then for all 
fromulas  A and all times  m > 0, we have                              

(I, r, m) |=CG A iff    (I, r, 0) |=CG A
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Proof by contradiction. Suppose                                 
(I, r, m) |= CG A  and (I, r, 0) |= ¬ CG A

Suppose that exactly  l messages are sent between 
rounds  1 and  m inclusive. Since   (I, r, 0) |= ¬ CG A
there must be some sequence i1 , ... , ik of pairwise 
distinct processes in G such that                                 
(I, r, 0) |= ¬ Kik ... Ki1 A .  Let  i, j be distinct processes 
in  G and  j be distinct from  ik .                                
Since                      (I, r, m) |= CG A ,                            
it follows that        (I, r, m) |= (KiKj)l Kik ... Ki1 A       
by (a) of theorem 1, where the role of  A is played by 
Kik-1 ... Ki1 A , it follows that  <ik , j, i, ... , j, i> is a 
process chain in  (r, 0..m), where there are  l occurr-
ences of  j, i in this chain.  By Lemma 1, at least  2l
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messages must be sent in round  r between rounds  1  
and  m . But this contradicts our assumption that exactly 
l messages are sent. Thus common knowledge cannot 
be gained. 

The proof that common knowledge cannot be lost pro-
ceeds along identical lines, using part (b) of Theorem 1 .

Remark. It can be shown that Theorem 1 and Theorem 2 
can be proved with almost no change in the proofs for re-
liable systems. This shows that reliability does not play 
an important role in these results. It is the fact that there 
is no bound on message delivery that is crucial here.



Knowledge in Multi-Agent Systems 
IVc

75

Theorem 1 and lemma 1 can prove a number of lower 
bounds on number of messages required to solve certain 
problems.

Example 3. (Mutual exclusion) Intuitively, it means that 
there is a shared resource but only one process may ac-
ces the resource at a time.

We say that a.m.p. system  R is a system with  mutual 
exclusion  if in every run of   R , no two processes have 
simultaneously access to the resource.   

It can be shown that for a system  R with mutual exclus-
ion and a run  r in  R in which processes   i1 , ... , ik  in 
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sequence have access to the shared resource. If we assume 
that for every  j , 1 < j < k  the proccesses  ij and ij+1 are 
different, then  < i1 , ... , ik>  is a process  chain in  r .

By lemma 1 this implies that at least  k-1 messages are 
sent in  r . This gives us a lower bound on the number of 
messages required for mutual exclusion: for  k processes 
to acquire access to a shared resource, at least  k-1 mess-
ages should be sent.


