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Motivation.

So far, common knowledge has served as a tool for proving impossibility 
results. Namely, the fact that there are no protocols solving the coordinated 
attack problem or for agreeing to disagree.

We now present a case in which common knowledge is used in a positive 
manner, as a tool for the design of efficient protocols.

The Coordinated Attack problem deals with the impact that unreliable 
communication has on coordination in multi-agent protocols.

Another major source of difficulty in distributed system is the fact that 
processes may fail during the execution of a protocol.

This can cause particular difficulties when it comes to coordinating actions  
between different sites in such a system.
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We do not want two sites in an airline reservation system to sell the 
same seat to two different people.

A bank must ensure that every transaction made at one of its automated 
tellers is appropriately recorded in its central database. 

Because the components of such a system do fail  occasionally  for 
various reasons, it is important to program them in such a way that the 
overall behaviour of the system will not be jeopardized by the failure of a 
small number of its components.

The paradigmatic problem concerning reaching agreement at different sites 
in a system in the presence of failures is the  Byzantine agreement problem.

This problem can be informally described as follows.
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We have   n generals, of which at most  t <  n might be 
traitors. Each general initially prefers either attack or retreat 
(although they are willing to do something other than what 
they initially prefer) .

At the end of the protocol, they must reach agreement, so 
that the loyal generals either all attack or all retreat.

The traitors can do whatever they like, we have no control 
over them.

Although the generals can talk to each other (over reliable 
channels), there is no broadcast facility. It is not possible 
for a general to take a loudspeaker and announce his  vote 
to all the others.

There is a trivial protocol satisfying these conditions : one 
where the generals retreat, no matter what their initial 
preference.

In practice, however, this is not a satisfactory solution.
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A natural additional property to demand is that if all 
generals initially prefer to do the same thing  (either 
attack or retreat),  this is what they will agreed to do.

This condition eliminates trivial solutions such as 
retreating no matter what.

If we are guaranteed that there are no traitors in 
the system ,  then reaching agreement is trivial.

The generals all talk to each other ,  find out what 
each of them initially prefers to do, and use some 
uniform rule for reaching the a decision (for 
example, the rule might be to attack if any general 
initially prefers to attack).

In the presence of traitors, however, the situation 
becomes considerably more complicated. 

What to do if a traitor tells one loyal general that he 
wants to attack and tells another that he wants to 
retreat ?
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This problem turns out to be remarkably subtle and has been 
studied at length in the literature.

We focus here on one particular variant of the problem, where we
require that not only do the generals decide, but that they decide 
simultaneously. We refer to this variant as the  Simultaneous 
Byzantine agreement  (SBA) problem.

Just as in the case of Coordinated Attack, we can show that in a
large class of interpreted contexts, the requirement of simultaneity 
here leads to common knowledge. 

We now define this class of interpreted contexts, which we call ba-
compatible. These ba-compatible contexts share many of the 
features of ca-compatible contexts.
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Again, we want to make minimal assumptions about that processes`
(i.e. generals`) local states and have environment‘s state record the 
actions performed.

The main difference is that we now want the environment to specify 
which processes are faulty and how they are faulty. 

This means that there are more possible actions that the environment 
performs. 

For now, we do not go into details of what these actions are. We will 
turn to it later.
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Formally, we say that an interpreted context   (γ , π)  is   ba-compatible
if it satisfies the following assumptions:

(1) For each process   i = 1, … , n one of    i‘s   actions is denoted  
decidei(y),   for   y = 1  or   y = 0. We can think that   decidei(0)  as 
representing a decision to retreat, while   decidei(1)   represents a 
decision to attack.

(2) The environment´s actions include ones of the form  (ae1 , … , aen ). 

(3) The components   aei   themselves are tuples, which describe which 
messages sent by the process   j are delivered to process   i in that 
round,  whether or not   i fails in that round, which we capture by a   
faili    action, and its faulty behaviour  if it does fail.  

We discuss later on how this faulty behaviour is described, since this 
depends on the type of faulty behaviour we allow.

Definition. (ba-compatible contexts)
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(6) γ is a recording context. Note that recording context allows us to
tell from the environment‘s state which processes are faulty, by seeing 
which   faili   actions have been performed.

(7)  Process  i‘s  initial state is a tuple of the form   (xi , …. )   where  xi  

is either   0 (retreat)   or   1 (attack) . Thus,   xi represents   i‘s  initial 
preferences.

(8)  We also assume that process   i‘s   local state records whether 
process   i has performed an action  decidei(y) .  

(5) We say that process   i is   faulty  in round k of run   r (or at the 
point   (r , k))  if process   i failed in some round    k‘ up to  k of run   r. 
Otherwise, we say that   i is   nonfaulty or correct.

(4) We say that process   i fails in round   k   of run   r   if the 
environment‘s action at this round has a   faili   component.
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(9) The environment‘s state includes the tuple   (x1 , … , xn ) , where xi is 
either  0   or   1  representing the processes initial preferences.

(10) The language includes the propositions   decidedi(y), decidedN(y),  and  
Ey , for   all  i and   Boolean   y .

We define   π so that

decidedi(y)  is true if the action   decidei(y)   was performed at any 
previous round ,

decidedN(y)  is true if each nonfaulty process i   has performed  the action   
decidei(y) ,

Ey  is true if    xi =  y  for some process   i .

decidingN(y) is defined as an abbreviation of   

¬ decidedN(y)  &  O decidedN(y) 
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Comment.   All the results of this section hold even without the 
assumption  (8), but it turns out to be convenient for results in later 
sections. We make no other assumptions about the form of the 
processes‘local states.

(11)  recall that the nonfaulty processes can be determined from the 
environment‘s local state.

Definition. (Ba-compatible interpreted systems)

A ba-compatible interpreted system  is one of the form  ISrep(P , γ ,π ) 
where   P is a protocol and  ( γ ,π )  is a ba-compatible interpreted 
context.
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As we said earlier, we intend to focus here on the simultaneous
Byzantine agreement (SBA).  

Comment.  In a ba-compatible interpreted system, we can talk about 
processes‘ initial preferences and their decisions, so it makes sense to 
talk about SBA.
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Definition.  (The specifications  σsba ) 

The specification   σsba is run-based. It is satisfied by all ba-compati-
ble interpreted systems   I such that each run satisfies

• Decision: every process   i that is nonfaulty in   r performs exactly 
one  decidei action in   r ,

• Agreement: the nonfaulty processes all decide the same value,

• Validity: if all processes have the same initial preference   x , then all 
nonfaulty processes decide on the value   x ,

• Simultaneity: the nonfaulty processes all decide simultaneously, i.e. in 
the same round.
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Comment.

•The first clause ensures that nonfaulty processes decide exactly once,

• the second one ensures that their decisions are in agreement,

• the third ensures the decision is related to the initial preferences in a 
nontrivial way, and

• the fourth guarantees that the decision is simultaneous.

Note that the third clause prevents trivial solutions such as one in 
which everyone simply always decides on the value   0   in the first 
round and halts.

Indeed, the third clause ensures that for any given   y in   {0 , 1} the 
processes may decide on the value   y only if at least one process had  
y as its initial preference. 
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Definition.  (Protocols for SBA)

(i) We say that   P is a  protocol for SBA  or that   P attains   SBA , in a 
ba-compatible interpreted context  ( γ ,π )  if   P satisfies   σsba in        
( γ ,π ) .

(ii) If   r is a run in  ISrep(P , γ ,π ) , we say that   P attains  SBA  in   
k   rounds in   r if   (I ,r ,k)  |= decidingN .

(Note that this means that a nonfaulty process   i actually performs the 
action   decidei  in round   k + 1 .)

(iii) We say that   P attains SBA  in   k   rounds if   P attains  SBA 
in   k rounds in all runs of   ISrep(P , γ ,π ) .

Comment.  It should be clear from the specifications and descriptions of 
the problems that  SBA  and Coordinated Attack are closely related.
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• we assume that each general   i has initial preference   xi   

regarding whether or not he would like to attack,

• we could then restate the coordinated attack problem by requiring 
that if both generals initially prefer to attack, then they should 
attack, while if both initially prefer to retreat, they should retreat.

• While this version of the coordinated attack is slightly different 
from the one, we considered, we can easily prove results analogous 
to Theorem 1.  and   Corollary 2.  for it.

• In fact, it is easy to show that if   P is a deterministic protocol for 
this modified version of the  coordinated attack in an interpreted 
context  ( γ ,π )  allowing all four configuration of initial 
preferences, then  Irep(P , γ ,π )  satisfies  σca .          (Excercise)

Indeed, we can reformulate Coordinated Attack slightly to resemble  
SBA  even more as follows:
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Despite these similarities, there are some significant differences 
between   SBA   and   CA, at least in the  contexts of most iterest to 
us.

• In Coordinated Attack, both generals are assumed to be reliable :  
the problem is with the communication links.

• In SBA, we are mainly interested in contexts where correct generals 
have no problem communicating. Thus, we focus on contexts where 
communication is  reliable and  immediate, so that a message is 
guaranteed to arrive in the same rou nd in which it is sent, provided 
that neither the sender nor the in tended recipient of the message is 
faulty.

• The problem in these contexts is not with communication, but with 
the faulty processes.  [end of Comment]
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The Byzantine agreement problem is sensitive to the type of faulty 
behaviour a faulty process can display. The literature has concentrated 
on three basic failure modes.

(1)  Crash failures : a faulty process behaves according to the protocol, 
except that it may crash at some point, after which it sends no messages. 
In the round in which the process fails, the process may perform an 
arbitrary subset of the actions it is supposed to perform, according to the 
protocol it is following. In particular, it may send only a subset of 
messages the it is supposed to send according to its protocol.

(2)  Omission failures : a faulty process behaves according to the 
protocol, except that it may omit to send or receive an arbitrary set of 
messages in any given round. We sometimes refer to this case as the 
general-omission failure mode.
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(3) Byzantine failures : faulty processes may deviate from the 
protocol in an arbitrary fashion : they may „lie,“ send deceiving 
messages, and collude to fool the nonfaulty processes in the most 
malicious ways.
Comment.  In practice,

• crash failures occur quite regularly, as a result of mechanical and 
electrical failures. Crash failures can be viewed as a restricted type of 
omission failures (a process omits to send all messages from a certain 
point on.

• Omissions failures are often result of communication problems. 
Omission failures in turn can be viewed as a restricted type of the 
Byzantine failures to be defined below.

• Byzantine failures represent the worst possible failures, where we can 
make no assumptions on behaviour of faulty processes.

• We model these failures in terms of the environment‘s actions.
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What we may expect ?  (A short review of results)

Assume that there are  n processes and that at most   t of them are in 
any time faulty.

(i)  It is known that there are protocols that attain  SBA in  t + 1 rounds 
in  all these modes, provided that communication is reliable and
immediate.

(ii) In the case of Byzantine failures i.e. if  failed processes may lie, there 
is a constraint on the relationship between the total number  n   of 
processes in the system and the upper bound   t on the number of faulty 
processes:                                                      . .          . . . .. .    

There is a protocol for  SBA  in this case iff   n >  3t .

(iii) Moreover,
there is no protocol that attains  SBA  in fewer than     t + 1 rounds.

In fact, it is known  that any protocol for  SBA  in one of these failure 
modes requires  at least   t + 1  rounds  to attain  SBA  in runs where are 
no failures at all.
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Comment. It might seem surprising that, even if we consider such 
relatively benign failures as crash failures, we still have to take    t + 1   
rounds to reach agreement even in runs where there are no faulty
processes.
As the following example shows, the problem here, as in the case of 
Coordinated Attack is not what does happen, but what  might happen.

Example 1. (Attaining   SBA - the case of  Crash Failures )

Suppose that   n =  3  and   t = 1 ,  and we restrict to crash failures.  
Consider a run where all the processes have initial preference  0    and 
there are no failures.

By the Validity requirement, this means, that all the processes must decide 
on the value   0 .

Suppose that in round   1   every process sends its initial preference to 
every other process .  Thus, at time   1 , all the processes know that every 
process initially preferred    0 . 
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A failed process is assumed to have no information, and we mark this by 
the letter   X.

Otherwise an entry in the table can be either   0,  1,  or  # , where we use     
a   #   in row   i of column   j to represent the fact that    j did not receive 
information about   i‘s   initial preference    xi (because process   i crashed 
before sending    j a message).

Since we are considering only crash failures, all the processes are telling truth 
here. This means that all the processes know at time   1   that they must all 
ultimately decide on the value   0 . 

Why are they not able to decide on the value right away ?

We can represent the situation at time   1  in a run using a   3 x 3 table, 
where each column represents information that one process has at time 1  
about the initial preferences    x1 , x 2 ,  and   x3  (see figure SBA 1).
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1     2     3                            1      2      3 1     2     3

x1       0 0 0                       x1   0 X 0 x1    0 X    0

x2 0     0     0                       x2 0      X     *                           x2 1     X   *

x3 0     0     0                        x3 0      X     0                           x3 0     X   0

T1 T2 T3

x1       0 0 0                                                               x1   1 1    1

x2 1    1     1                                                    x2 1     1    1

x3 0     0     0                                   … x3 1     1    1

T4 T10

Figure  SBA  1.

In the run, we just described, the situation is represented by a table 
whose all entries are  0 ; this is table  T1   in the figure  SBA 1.
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In particular, although in the situation depicted by  T1   process  1  received   
a  0  from all processes, it is possible, as far as process  1  is concerned, that 
process   3  did not receive a message at all from process  2 ; this could 
happen if  2  crashed after sending a message to  1 , but before sending a 
message to  3 ;  this situation is depicted by table  T2  .   

Note that in  T1   process  1 does not consider it possible that process   2  told 
3  that its initial preference is  1 . We are not allowing lying here ; this would 
require Byzantine failures .

Clearly, process   1  cannot distinguish   T1   from   T2  ;  it has the same local 
state in both situations which is described by the first column of the table.

Recall that the nonfaulty processes must all decide simultaneously. 
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Now in the situation described by   T2  , process   3 , which did not get a 
message from process   2 , considers  it possible that   2‘s  initial prefer-
ence   x2 is  1 , and that   2   passed   x2 on to process   1 . 

Thus, in the situation described by  T2  , process  3  considers the situation 
described by   T3  possible. 

Finally, in  T3  process  1  does not know of any failure , and considers       
T4    a possibility.

Notice that our tour from  T1  to  T4   involved  „silencing“ process   2 , 
changing its initial preference   x2  , and  „reviving“ the process. By applying 
this type of reasoning it is possible to do the same to process 3  and then to 
process  1 .

As a result, we can construct a sequence of tables   T1  , … , T10  such that  
T1  tis the table all of whose entries are  0  and   T10  is a table whose all 
entries are  1 . 
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For each consecutive pair of tables   Ti  , Ti+1  , with   i <  10 , there is 
some process that cannot distinguish the situation described by Ti  and  
Ti+1  and is correct in both these situations .

Now suppose that some correct process decides at time  1 on the value 0   
in the situation described by table   T1  .  By the agreement and simultane-
ity requirements of   SBA ,  all the processes must decide at time  1  on 
the value  0  in this situation.

Since process  1 cannot distinguish the situation described by  T1   from 
T2 ,  process  1  must decide at time  1  on the value  0   in the situation 
described by  T2  . Again, by the agreement and simultaneity require-
ments, the two processes that are correct in this case (1 and 3) must 
decide at time  1  on the value  0  in the situation described by   T3  .

Continuing this argument, we get that all processes decide at time  1  on 
the value  0  in the situation described by  T10  . 
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But in the situation described by  T10  ,  all the processes are correct and 
have  1  as their initial preference. The fact that they decide on the value  
0  in   T10   contradicts the validity requirement ! (End of Example 1.)

Comment.  As should be clear from our discussion, simultaneity plays a 
crucial role here. Our claim would not hold had we not require simultane-
ity. 

To see why, suppose again that process  1  decides on value  0 at time  1  in 
the situation described by table T1  . 

Since process  1 cannot distinguish the situation described by  T1   from that 
described by  T2  , we know  that process  1  also decides on the value  0   in 
the latter situation.
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Without the requirement of simultaneity, we cannot, however, conclude 
that process  3  decides on the value  0  in the situation described by  T2 

although we can conclude that process  3  will eventually decide on the 
value   0   in  this situation. (This may, however, require further 
messages from process  1 .)



Knowledge in Multi-Agent Systems 
VI  SBA

29

We have stated (but not proved) that for any given number  n of 
processes and an upper bound   t ,  for the number of faulty processes 
that    t + 1   rounds are required to attain  SBA even if there are no 
failures.

It might seem that if we need   t + 1  rounds, if there are no failures, 
things could be worse if there are failures.

We shall show that this is not the case.

In fact, by doing a knowledge-based analysis of  SBA , we can 
completely characterize the number of rounds that are required to 
reach agreement.

How many rounds are needed in the general case ?
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Motivation. The validity requirement of  SBA  implies, that if all initial 
preferences are  1 , then the nonfaulty processes should decide on the 
value  1.  
In particular, for a process to decide on the value  0 , the process must 
know that not all initial preferences are  1 . Since the only possible initial 
preferences are  0  and  1 , this says that for a process to decide on the 
value  0 , the process must know that some initial preference is 0 .

Of course, knowledge that some initial preference is   v is not sufficient 
for a process to decide on the value   v .  Otherwise, a process could 
simply always decide on its initial preference, creating a violation of the 
agreement property in cases where two processes had different initial 
preferences.

In fact, Example  1. shows that even if a process knows that all initial 
preferences are  0 , this is not sufficient to decide on the value  0 .
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What other knowledge do the processes need ?

A digression (coordinated Attack) Just as  SBA  requires simultaneity 
(namely simultaneous attacking), so the coordinated attack problem 
requires simultaneity, as well. (Namely simultaneous attacking.)

CA Corollary 1. of coordinated attack problem tells us that if the 
generals attack simultaneously, then the fact that they are both attacking 
must be common knowledge.

It is natural to expect that  SBA to require attaining common knowledge 
as well. The question is, which group of processes actually attains 
common knowledge ?

It is not the set of  all processes, since we do not place any require-
ments on the actions of the faulty processes.

The  SBA  problem specification   σsba   requires only that the  nonfaulty
processes decide on the appropriate value. SBA  therefore involves 
coordinating the actions of nonfaulty processes.
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Sets of Nonfaulty Processes

Definition.   (Rigid and varying sets)

Let   R be a system over a set of global states of   n processes.  Let   S be 
a function that gives to every point   (r , m)   a subset    S(r , m)  of the set 
{1, 2, … , n}  of processes. We assume that  S(r , m)  is a set of nonfaulty 
processes at point  (r , m) .  By a misuse of terminology, we shall think that 
the function   S   is a set varying in time.

We say that   S is a rigid set  if it is constant,  i.e. if there is a subset   G
of the set of processes such that   S(r , m) =  G for every point  (r , m) .

Otherwise, we say that   S is a varying set.    

Motivation. The set of nonfaulty proceses may change during each run.
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Thus, we expect that the nonfaulty processes will need to attain common 
knowledge.

However, the set of nonfaulty processes is not fixed, but varies from one 
point to another. Hence the set of nonfaulty processes is a set described by 
a function  S(r , m).

We use the formula   i ε S  to denote that  i is in the varying set   S .

We take    i ε S  to be true at a point  (r , m)  if    i ε S (r , m).

Comment. Varying sets arise naturally in the analysis of various problems.

For example, when we consider a system in which processes can join and 
leave the system dynamically , the set of processes in the system is varying.

Similarly, the set of processes that have direct communication links to a 
given process in such a system is varying.
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The varying set of most interest for us here is the set of nonfaulty 
processes,  which we denote by   N .

Thus, the set  N( r , m )  consists of all processes that are not faulty at 
the point  (r , m) .

Motivation. Before we can relate  SBA  to common knowledge, we need 
to extend the definition of common knowledge to varying sets.

Given a varying set  S ,  a natural candidate would  be 

Esφ defined as  I iεS φ

According to this definition ,  Esφ would hold at a point  (r , m)  if all the 
processes in  S (r , m)   know  φ at  (r , m) .

CS   would then be defined in terms of   Es as usual.

But note that in a formula   EsEsφ , or even  Ki Esφ the value that the 
varying set  S  takes on may change. 
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For example, in evaluating the truth of  Ki Esφ , the value of  S may be 
different at different points that  i considers possible.

How can we judge whether the proposed definitions of   Es and CS   are  
appropriate ?

One criterion that is important for our application is whether we can 
prove that if the members of   S have coordinated their actions, then this 
fact is guaranteed to be common knowledge among the members of  S .

Does the definition of  CS   we have just given have this property ?

For example, in  SBA , it is necessarily the case that when a nonfaulty 
process decides, then it is common knowledge among the nonfaulty
processes are deciding ? We would expect this to be the case, by analogy 
with the situation for coordinated attack ( CA Proposition 1).
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Remark. It can be shown, if a nonfaulty process is guaranteed to know 
that it is nonfaulty, then there is indeed such a common knowledge 
among the nonfaulty processes.

But in general, a process does not know whether it is faulty  (at least, not 
in the round that it fails).

The consequences of this lack of knowledge can be easily seen in the 
case of general-omission failures.

In this case, it is not difficult to construct a run in which a nonfaulty 
process decides on the value  0  and yet considers it possible that the 
nonfaulty processes are deciding on the value  1. This is a consequence 
of the fact, that the process does not know whether it or the other 
processes are faulty. (Excersise)

We now define a notion of common knowledge that is appropriate even 
when the nonfaulty processes do not necessarily know that they are 
nonfaulty.
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Let us go back to the Example 1.  Note that while the nonfaulty process 
in the example does not know that the nonfaulty processes are all 
deciding on the value  0 , it might know that  if it is nonfaulty , then they 
are all deciding on the value  0 .

This motivates the following :

Definition. (Processes‘ believes)

Given a varying set  S and a process   i ,  define   Bi
S φ to be an abbreviat-

ion for   Ki ( i ε S ->  φ ) . Thus,

(I , r , m) |=  Bi
S φ iff   (I , r‘ , m‘) |= φ for all points   (r‘ , m‘) such that 

ri (m)  =   ri‘ (m‘) and   i ε S( r‘, m‘)

Comment. Bi
S φ holds iff  if  i knows that  if it is in  S , then  φ holds .
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It is easy to check that  Bi
S  satisfies the axioms of   S5, except for the 

Knowledge Axiom  ( Bi
S φ ->  φ ). 

Nevertheless, the Knowledge Axiom is satisfied at points where  i is in 
the varying set  S . That is,

if   i ε S(r‘, m‘) then  (I , r , m) |=  Bi
S φ -> φ

In general, it may be better to view  Bi
S as a notion of  belief rather than 

knowledge.

Corresponding to the varying set  S , we add new modal operators   ES and  CS .
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Definition. ( ES  and CS )

(i) We define   ESφ as  I i ε S  Bi
S φ .  Thus,

(I , r , m) |=  Esφ iff  (I , r , m) |=  Bi
S φ for all  i ε S (r , m)

Comment. In other words  everyone in  S  knows  φ at the point (r , m) 
exactly if every process in  S (r , m)  knows that  if it is in  S , then  φ holds.

Note that if  S (r , m)  is empty, then by definition  ESφ holds.

The notion  CSφ is now defined as an infinite conjunction in terms of  ESφ
.

(ii)  Defining   ES
k+1φ inductively as   ES ES

kφ we have

(I , r , m) |=  Csφ iff  (I , r , m) |=  Es
kφ for k = 1, 2, ...
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Thus this definition extends our original definition of  CGφ to the case of 
varying sets.

Let us now reconsider the case where a nonfaulty process is guaranteed to 
know that it is nonfaulty. In this case, when  S is the varying set of 
nonfaulty processes, it is clear that if process   i is nonfaulty, then   Bi

S φ
is equivalent to Ki

S φ , for every formula   φ .

Consequently, results we obtain later (Theorem 1. and Corollary 1.) would 
hold also in the case had we used the first definition of common
knowledge for non-rigid sets.

As in the case of  CG   we can relate  CSφ to a notion of reachability.

Comment. It is easy to see that if   S is fixed, so that  S (r , m) = G for 
some set of processes and for all points  (r , m) , then CSφ < - >   CGφ .
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Definition. (S-reachability)

(i) We say that a point   (r‘,m‘)   is  S-reachable from a point (r , m)   in k
steps (k > 0)   if there exists a sequence of points

.                       (r , m) = (r0 , m0) , (r1 , m1) , … , (rk , mk ) = (r‘, m‘)

such that for all   l , l < k ,  there exists   i ε (S (rl , ml)     S  (rl+1 , ml+1))  
with  (rl , ml) ~i (rl+1 , ml+1) .

∩

Now we get the following analogue of lemma on  G-reachability:

Lemma 1. (I , r , m) |=  Csφ iff  (I , r‘, m‘) |= φ for all points  (r‘, m‘)   
that are   S-reachable from  (r , m) .

(ii) We say that  (r‘, m‘)  is  S-reachable from (r , m)  if  (r‘, m‘)  is S-reach-
able from  (r , m)  in   k steps for some   k .
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Using lemma 1. we can also show that  CS satisfies many properties  of 
the common knowledge operator CG .

In particular, it satisfies all the axioms of  S5  except possibly the 
Knowledge Axiom. It also satisfies the Fixed-Point Axiom and Induction 
Rule.

Moreover, if  S (r , m)  is non-empty for all points  (r , m)  in an interpreted 
system   I ,  then   CS  satisfies the Knowledge Axiom in   I as well.

Using   CN , we can get an analogue of CA Proposition 1. for SBA.

Theorem 1. Let  ( γ , π )  be a  ba-compatible interpreted context and let  P  
be a deterministic protocol .  If   I = Irep (P , γ , π )  satisfies   σsba   , then

if   I |= decidingN (y)   then   CN (decidingN (y))
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Comment. As with the coordinated attack, Theorem 1. does not hold for 
nondeterministic protocols.

• But knowledge-based analysis shows that if we put some further 
restrictions on   ψ in appropriate contexts, then we can extend the Theorem 
to nondeteministic protocols.

• Theorem  1.  states that it is valid in a system   I satifying   σsba that 
whenever the nonfaulty processes decide on the value  y , then it is a com-
mon knowledge among the nonfaulty processes, i.e.   CN (decidingN (y)  
holds.

• Knowing this, we are interested  how long it will take to attain common 
knowledge in the contexts that are of interest to us for  SBA.

• In the case of  SBA , the processes are not allowed to decide on the value  
1  when all initial preferences are  0 .  This implies that when they decide on 
the value  1  it must be the case that some process‘ initial preference was 1, 
as stated in the following Corollary 2.
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Corollary 2.  Let  ( γ , π )  be a  ba-compatible interpreted context 
and let  P  be a deterministic protocol .  If   I = Irep (P , γ , π )  satisfies   
σsba   , then

if   I |= decidingN (y)   then   I |=  CN (Ey)

Comment. Neither Theorem 1.  nor  Corollary 2.  would have held in 
the case of general-omission failures if we had used the first attempted 
definition of common knowledge for non-rigid sets.

But still, there are variants of  SBA for which the first definition is 
appropriate.
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Theorem 2. There are deterministic protocols that attain  SBA  in  t +1 
rounds in each of the contexts in   Γsba . 

Theorem 3. If   P   is a deterministic  protocol that satisfies   σsba in a 
context γ ε Γsba ,  r is a failure-free run in  Rrep (P , γ , π ) , and  P
attains   SBA  in   t‘ rounds in r ,  then  t‘ >   t .
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Attaining  SBA

Corollary 2. shows that attaining common knowledge that some process 
had initial preference   y   is necessary in order to decide on the value   y .

One of our goals here is to show that it is a sufficient condition as well ,  
by describing a program that attains  SBA  by deciding which of 
CN(E0)  or  CN(E1)  holds. 

Notation. Let  decidedi   be an abbreviation for 

decidedi (0)  v  decidedi (1)

so decidedi   is true if process   i   has made a decision.
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Process’ i’s  program would have the following form:

case of

if  ¬ decidedi  &  Bi
N CN (E0)                                                            

.                         do  decidei (0)

if  ¬ decidedi   &  ¬ Bi
N CN (E0)  &  Bi

N CN (E1)                           
.                         do decidei (1)

if  ¬ decidedi   &  ¬ Bi
N CN (E0)  &  ¬ Bi

N CN (E1)                         
.                         do sendalli (local state)

end case
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Thus, messages in  SBA are sent according to  FIP  (Full Information 
Protocol).

Note that since   Bi
N φ is an abbreviation for   Ki ( i ε N   ->  φ ) , test 

such as   Bi
N CN (E0)  and  Bi

N CN (E1) are indeed knowledge tests. Thus 
the above program is not a run-based program like standard programs 
are , but it is a knowledge-based program.

We argued informally that , provided that all nonfaulty processes do 
eventually decide , then a program of this form satisfies the 
specification  σsba . Now, we can state it as a Theorem.

Comment. Recall that the action  sendalli (local state) has the effect of 
sending each process other than  i the message  l  if process  i’s local 
state is l .  
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Theorem 4. If   (γ , π)  is a ba-compatible interpreted context ,  I   is 
consistent with the program  SBA  in  (γ , π), and CN (E0)  v CN (E1) is
attained in every run  r  of   I , then   I   satisfies   σsba .

Moreover, the processes decide in a run  r  of  I  at the round following 
the first time that  CN (E0)  v CN (E1) is attained.


