Simultaneous Byzantine
Agreement

Knowledge in Multi-Agent Systems 1
VI SBA

M otivation.

So far, common knowledge has served as atool for proving impossibility
results. Namely, the fact that there are no protocols solving the coordinated
attack problem or for agreeing to disagree.

We now present a case in which common knowledge is used in a positive
manner, as atool for the design of efficient protocols.

The Coordinated Attack problem deals with the impact that unreliable
communication has on coordination in multi-agent protocols.

Another magjor source of difficulty in distributed system is the fact that
processes may fail during the execution of a protocol.

This can cause particular difficulties when it comes to coordinating actions
between different sitesin such a system.

Knowledge in Multi-Agent Systems 2
VI SBA

We do not want two sitesin an airline reservation system to sell the
same seat to two different people.

A bank must ensure that every transaction made at one of its automated
tellersis appropriately recorded in its central database.

Because the components of such a system do fail occasionally for
various reasons, it isimportant to program them in such away that the
overal behaviour of the system will not be jeopardized by the failure of a
small number of its components.

The paradigmatic problem concerning reaching agreement at different sites
in a system in the presence of failuresisthe Byzantine agreement problem.

This problem can be informally described as follows.

Knowledge in Multi-Agent Systems 3
VI SBA

Wehave n generals, of which at most t< n might be
traitors. Each general initially preferseither attack or retreat
(although they are willing to do something other than what
they initially prefer) .

At the end of the protocol, they must reach agreement, so
that the loyal generalseither all attack or all retreat.

Thetraitors can do whatever they like, we have no control
over them.

Although the generals can talk to each other (over reliable
channels), thereisno broadcast facility. It isnot possible
for a general to take a loudspeaker and announce his vote
toall theothers.

Thereisatrivial protocol satisfying these conditions: one
wherethe generalsretreat, no matter what their initial
preference.

In practice, however, thisis not a satisfactory solution.

Knowledge in Multi-Agent Systems 4
VI SBA




A natural additional property to demand isthat if all
generalsinitially prefer to do the samething (either
attack or retreat), thisiswhat they will agreed to do.

Thiscondition eliminatestrivial solutions such as
retreating no matter what.

If we are guaranteed that thereareno traitorsin
the system, then reaching agreement istrivial.

Thegeneralsall talk to each other , find out what
each of them initially prefersto do, and use some
uniform rulefor reaching the a decision (for
example, therule might beto attack if any general
initially prefersto attack).

In the presence of traitors, however, the situation
becomes consider ably more complicated.

What to doif atraitor tellsoneloyal general that he
wantsto attack and tellsanother that he wantsto
retreat ?

Knowledge in Multi-Agent Systems
VI SBA

This problem turns out to be remarkably subtle and has been
studied at length in the literature.

We focus here on one particular variant of the problem, where we
require that not only do the generals decide, but that they decide
simultaneously. We refer to this variant asthe Smultaneous
Byzantine agreement (SBA) problem.

Just asin the case of Coordinated Attack, we can show that in a
large class of interpreted contexts, the requirement of simultaneity
here leads to common knowledge.

We now define this class of interpreted contexts, which we call ba-
compatible. These ba-compatible contexts share many of the
features of ca-compatible contexts.

Knowledge in Multi-Agent Systems 6
VI SBA

Again, we want to make minimal assumptions about that processes’
(i.e generals’) local states and have environment's state record the
actions performed.

The main difference is that we now want the environment to specify
which processes are faulty and how they are faulty.

This means that there are more possible actions that the environment
performs.

For now, we do not go into details of what these actions are. We will
turnto it later.

Knowledge in Multi-Agent Systems
VI SBA

Definition. (ba-compatible contexts)

Formally, we say that an interpreted context (y, ) is ba-compatible
if it satisfies the following assumptions:

(1) For eachprocess i=1,...,n oneof i‘s actionsisdenoted
decide(y), for y=1 or y=0.Wecanthink that decide(0) as
representing adecision to retreat, while decide(1) representsa
decision to attack.

(2) The environment’s actions include ones of theform (a, , ... , 8,)-

(3) The components a, themselves are tuples, which describe which
messages sent by the process j aredelivered to process i in that
round, whether or not i failsin that round, which we capture by a
fail, action, and itsfaulty behaviour if it doesfail.

We discuss later on how this faulty behaviour is described, since this
depends on the type of faulty behaviour we allow.

Knowledge in Multi-Agent Systems 8
VI SBA




(4) We say that process i failsinround k ofrun r if the
environment's action at thisround hasa fail; component.

(5) We say that process i is faulty inround k of run r (or at the
point (r,K)) if process i failedinsomeround k' upto k of run r.
Otherwise, we say that i is nonfaulty or correct.

(6) y isarecording context. Note that recording context allows usto
tell from the environment' s state which processes are faulty, by seeing
which fail, actions have been performed.

(7) Process i‘s initial stateisatuple of theform (X, ....) where x;
iseither O (retreat) or 1 (attack).Thus, x represents i‘s initial
preferences.

(8) Weaso assumethat process i‘s local state records whether
process i has performed an action decide(y) .

Knowledge in Multi-Agent Systems 9
VI SBA

(9) The environment's state includesthe tuple (x,, ..., X,) , wherex; is
either 0 or 1 representing the processesinitial preferences.

(10) The language includes the propositions decided(y), decided,(y), and
Ey,for al i and Boolean vy.

Wedefine 7 sothat

decided,(y) istrueif theaction decide(y) was performed at any
previous round ,

decided,(y) istrueif each nonfaulty process i hasperformed the action
decide(y)
Ey istrueif x =y for someprocess i .
decidingy(y) is defined as an abbreviation of
- decided,(y) & O decidedy(y)

Knowledge in Multi-Agent Systems 10
VI SBA

(11) recdll that the nonfaulty processes can be determined from the
environment'slocal state.

Comment. All the results of this section hold even without the
assumption (8), but it turns out to be convenient for resultsin later
sections. We make no other assumptions about the form of the
processes local states.

Definition. (Ba-compatible interpreted systems)

A ba-compatibleinterpreted system is one of theform 1S%(P, y ,z)
where P isaprotocol and (y,r) isabacompatibleinterpreted
context.

Knowledge in Multi-Agent Systems 11
VI SBA

Comment. In aba-compatible interpreted system, we can talk about
processes initial preferences and their decisions, so it makes senseto
talk about SBA.

Aswe said earlier, we intend to focus here on the simultaneous
Byzantine agreement (SBA).

Knowledge in Multi-Agent Systems 12
VI SBA




Definition. (The specifications ¢%2)
The specification ¢%2 isrun-based. It is satisfied by all ba-compati-
bleinterpreted systems | such that each run satisfies

* Decision: every process i thatisnonfaulty in r performsexactly
one decide actionin r,

* Agreement: the nonfaulty processes all decide the same value,

* Validity: if al processes have the sameinitial preference x, then all
nonfaulty processes decide on thevalue x,

» Smultaneity: the nonfaulty processes all decide simultaneoudly, i.e. in
the same round.

Knowledge in Multi-Agent Systems 13
VI SBA

Comment.
*Thefirst clause ensures that nonfaulty processes decide exactly once,
« the second one ensures that their decisions are in agreement,

« the third ensures the decision isrelated to the initial preferencesin a
nontrivial way, and

« the fourth guarantees that the decision is simultaneous.

Note that the third clause prevents trivial solutions such asonein
which everyone simply always decides on thevalue 0 inthefirst
round and halts.

Indeed, the third clause ensures that for any given y in {0, 1} the
processes may decide onthevalue y only if at least one process had
y asitsinitial preference.

Knowledge in Multi-Agent Systems 14
VI SBA

Definition. (Protocolsfor SBA)

(i) Wesay that P isa protocol for SBA or that P attains SBA,ina
ba-compatible interpreted context (y ,x) if P satisfies ¢%2 in
(y.m).

@ii)If r isarunin IS®(P,y,x),wesaytha P attains SBA in
k roundsin r if (I, k) |=deciding,.

(Note that this means that a nonfaulty process i actually performsthe
action decide inround k+1.)

(iii) Wesay that P attains SBA in k rounds if P attains SBA
in k roundsinall runsof 1S®(P,y x).

Comment. It should be clear from the specifications and descriptions of
the problemsthat SBA and Coordinated Attack are closely related.

Knowledge in Multi-Agent Systems 15
VI SBA

Indeed, we can reformul ate Coordinated Attack slightly to resemble
SBA even more asfollows:

» we assumethat each general i hasinitial preference x
regarding whether or not he would like to attack,

« we could then restate the coordinated attack problem by requiring
that if both generalsinitialy prefer to attack, then they should
attack, whileif both initially prefer to retreat, they should retreat.

« While this version of the coordinated attack is dightly different
from the one, we considered, we can easily prove results analogous
to Theorem 1. and Corollary 2. for it.

« Infact, it iseasy to show that if P isadeterministic protocol for
this modified version of the coordinated attack in an interpreted
context (y,z) alowing al four configuration of initial
preferences, then 1"°(P , y .z ) satisfies o%2. (Excercise)

Knowledge in Multi-Agent Systems 16
VI SBA




Despite these similarities, there are some significant differences
between SBA and CA, at leastinthe contexts of most iterest to
us.

« In Coordinated Attack, both generals are assumed to bereliable :
the problem is with the communication links.

* In SBA, we are mainly interested in contexts where correct generals
have no problem communicating. Thus, we focus on contexts where
communication is reliable and immediate, so that amessageis
guaranteed to arrive in the same rou nd in which it is sent, provided
that neither the sender nor the in tended recipient of the message is
faulty.

« The problem in these contexts is not with communication, but with
the faulty processes. [end of Comment]

Knowledge in Multi-Agent Systems 17
VI SBA

The Byzantine agreement problem is sensitive to the type of faulty
behaviour afaulty process can display. The literature has concentrated
on three basic failure modes.

(1) Crash failures: afaulty process behaves according to the protocol,
except that it may crash at some point, after which it sends no messages.
In the round in which the process fails, the process may perform an
arbitrary subset of the actionsit is supposed to perform, according to the
protocol it isfollowing. In particular, it may send only a subset of
messages the it is supposed to send according to its protocol.

(2) Omission failures: afaulty process behaves according to the
protocol, except that it may omit to send or receive an arbitrary set of
messages in any given round. We sometimes refer to this case asthe
general-omission failure mode.

Knowledge in Multi-Agent Systems 18
VI SBA

(3) Byzantinefailures : faulty processes may deviate from the
protocol in an arbitrary fashion : they may , lie," send deceiving
messages, and collude to fool the nonfaulty processes in the most
malicious ways.

Comment. In practice,

« crash failures occur quite regularly, as aresult of mechanical and
electrical failures. Crash failures can be viewed as a restricted type of
omission failures (a process omits to send al messages from a certain
point on.

» Omissions failures are often result of communication problems.
Omission failuresin turn can be viewed as arestricted type of the
Byzantine failures to be defined below.

* Byzantine failures represent the worst possible failures, where we can
make no assumptions on behaviour of faulty processes.

* We model these failures in terms of the environment' s actions.

Knowledge in Multi-Agent Systems 19
VI SBA

What we may expect ? (A short review of results)

Assumethat thereare n processesand that at most t of them arein
any time faulty.

(i) Itisknown that there are protocols that attain SBA in t + 1 rounds
in al these modes, provided that communication is reliable and
immediate.

(ii) In the case of Byzantine failuresi.e. if failed processes may lie, there
isaconstraint on the relationship between the total number n  of
processes in the system and the upper bound t on the number of faulty
processes:

Thereisaprotocol for SBA inthiscaseiff n > 3t.

(iii) Moreover,
thereis no protocol that attains SBA in fewer than t+ 1 rounds.

Infact, itisknown that any protocol for SBA in one of these failure
modes requires at least t+ 1 rounds to attain SBA inrunswhere are

no failures at all.
Knowledge in Multi-Agent Systems 20
VI SBA




Comment. It might seem surprising that, even if we consider such
relatively benign failures as crash failures, we still havetotake t+1
rounds to reach agreement even in runs where there are no faulty
processes.

As the following example shows, the problem here, asin the case of

Coordinated Attack is not what does happen, but what might happen.

Example 1. (Attaining SBA - the case of Crash Failures)

Supposethat n = 3 and t=1, and werestrict to crash failures.
Consider arun where all the processes have initial preference 0 and
there are no failures.

By the Validity requirement, this means, that all the processes must decide

onthevaue O.

Supposethatinround 1 every processsendsitsinitial preference to
every other process. Thus, attime 1, all the processes know that every
processinitialy preferred 0.

Knowledge in Multi-Agent Systems
VI SBA

21

We can represent the situation at time 1 inarunusinga 3x 3table,
where each column represents information that one process has at time 1
about the initial preferences x;, X,, and x; (seefigure SBA 1).

A failed process is assumed to have no information, and we mark this by
the letter X.

Otherwise an entry in the table can be either 0, 1, or #, where we use

a # inrow i of column j torepresentthefactthat j did notreceive
information about i's initial preference X (becauseprocess i crashed
beforesending | amessage).

Since we are considering only crash failures, all the processes are telling truth
here. This meansthat al the processes know at time 1 that they must al
ultimately decide on thevalue 0.

Why are they not able to decide on the value right away ?

Knowledge in Multi-Agent Systems 22
VI SBA

In the run, we just described, the situation is represented by atable
whose dll entriesare 0 ; thisistable T, inthefigure SBA 1.

o O O |k

2
0
0
0

o O O W

T

[N

o +k ©O

N

*

R
o o o |k

R

Figure SBA 1.

Knowledge in Multi-Agent Systems
VI SBA

1 2 3
X0 X O
X1 X *
X0 X 0

T3

X1 11

X1 1 1

Xl 11
TlO

23

Recall that the nonfaulty processes must all decide simultaneoudly.

In particular, although in the situation depicted by T, process 1 received
a 0 fromall processes, it ispossible, asfar as process 1 isconcerned, that
process 3 did not receive amessage at all from process 2 ; this could
happen if 2 crashed after sending amessageto 1, but before sending a
messageto 3; thissituation isdepicted by table T, .

Notethat in T, process 1 does not consider it possiblethat process 2 told
3 that itsinitial preferenceis 1. Weare not allowing lying here ; thiswould
require Byzantine failures.

Clearly, process 1 cannot distinguish T, from T, ; it hasthe same local
state in both situations which is described by the first column of the table.

Knowledge in Multi-Agent Systems 24
VI SBA




Now in the situation described by T, , process 3, which did not get a
message from process 2, considers it possiblethat 2's initial prefer-
ence x, is1,andthat 2 passed x, ontoprocess 1.

Thus, in the situation described by T, , process 3 considers the situation
described by T, possible.

Finally, in T, process 1 does not know of any failure, and considers
T, apossibility.

Notice that our tour from T, to T, involved ,silencing* process 2,
changing itsinitial preference x, , and ,reviving* the process. By applying
this type of reasoning it is possible to do the sameto process 3 and then to
process 1.

As aresult, we can construct a sequence of tables T, , ..., T,q such that
T, tisthetableall of whose entriesare 0 and T,, isatable whoseall
entriesare 1.

Knowledge in Multi-Agent Systems 25
VI SBA

For each consecutive pair of tables T, , T,,, , with i < 10, thereis
some process that cannot distinguish the situation described by T; and
T.., andis correct in both these situations.

Now suppose that some correct process decides at time 1 on thevalue 0
in the situation described by table T, . By the agreement and simultane-
ity requirementsof SBA , all the processes must decide at time 1 on
thevalue 0 in thissituation.

Since process 1 cannot distinguish the situation described by T, from
T,, process 1 must decideat time 1 onthevalue O inthe situation
described by T, . Again, by the agreement and simultaneity reguire-
ments, the two processes that are correct in this case (1 and 3) must
decideat time 1 onthevalue O inthe situation described by T, .

Continuing this argument, we get that all processes decide at time 1 on
thevalue O inthesituation described by T, .

Knowledge in Multi-Agent Systems 26
VI SBA

But in the situation described by T,,, all the processes are correct and
have 1 astheir initial preference. The fact that they decide on the value
0 in T,, contradicts the validity requirement ! (End of Example 1.)

Comment. As should be clear from our discussion, simultaneity plays a
crucia role here. Our claim would not hold had we not require simultane-
ity.

To see why, suppose again that process 1 decidesonvaue Oattime 1 in
the situation described by table T, .

Since process 1 cannot distinguish the situation described by T; from that
described by T, , weknow that process 1 also decidesonthevalue 0 in
the latter situation.

Knowledge in Multi-Agent Systems 27
VI SBA

Without the requirement of simultaneity, we cannot, however, conclude
that process 3 decideson thevalue O in the situation described by T,
although we can conclude that process 3 will eventually decide on the
vaue 0 in thissituation. (This may, however, require further
messages from process 1.)

Knowledge in Multi-Agent Systems 28
VI SBA




How many rounds are needed in the general case ?

We have stated (but not proved) that for any given number n of
processes and an upper bound t, for the number of faulty processes
that t+ 1 roundsarerequiredto attain SBA evenif there are no
failures.

It might seem that if weneed t+ 1 rounds, if there are no failures,
things could be worse if there are failures.

We shall show that thisis not the case.

In fact, by doing a knowledge-based analysis of SBA , we can
completely characterize the number of rounds that are required to
reach agreement.

Knowledge in Multi-Agent Systems 29
VI SBA

Motivation. The validity requirement of SBA implies, that if al initial
preferencesare 1, then the nonfaulty processes should decide on the
value 1.

In particular, for a process to decide on the value 0, the process must
know that not all initial preferencesare 1. Sincethe only possibleinitial
preferencesare 0 and 1, this saysthat for a process to decide on the
value 0, the process must know that some initial preferenceis 0.

Of course, knowledge that some initial preferenceis v isnot sufficient
for aprocess to decide on thevalue v. Otherwise, a process could
simply always decide onitsinitial preference, creating a violation of the
agreement property in cases where two processes had different initial
preferences.

In fact, Example 1. showsthat even if a process knows that al initial
preferencesare 0, thisis not sufficient to decide on thevalue 0.

Knowledge in Multi-Agent Systems 30
VI SBA

What other knowledge do the processes need ?

A digression (coordinated Attack) Just as SBA requires simultaneity
(namely simultaneous attacking), so the coordinated attack problem
requires simultaneity, aswell. (Namely simultaneous attacking.)

CA Corollary 1. of coordinated attack problem tells usthat if the
generals attack simultaneously, then the fact that they are both attacking
must be common knowledge.

Itisnatural to expect that SBA to require attaining common knowledge
aswell. The question is, which group of processes actually attains
common knowledge ?

Itisnot the set of all processes, since we do hot place any require-
ments on the actions of the faulty processes.

The SBA problem specification ¢%2 requires only that the nonfaulty
processes decide on the appropriate value. SBA thereforeinvolves
coordinating the actions of nonfaulty processes.

Knowledge in Multi-Agent Systems 31
VI SBA

Sets of Nonfaulty Processes

Motivation. The set of nonfaulty proceses may change during each run.

Definition. (Rigid and varying sets)

Let R beasystem over aset of global statesof n processes. Let S be
afunction that givesto every point (r, m) asubset Sr,m) of the set
{1,2,...,n} of processes. We assumethat Sr, m) isa set of nonfaulty
processes at point (r, m) . By amisuse of terminology, we shall think that
thefunction S isasetvaryingintime.

Wesay that S isarigidset if itisconstant, i.e. if thereisasubset G
of the set of processessuchthat S(r, m)= G for every point (r, m).

Otherwise, wesay that S isavarying set.

Knowledge in Multi-Agent Systems 32
VI SBA




Thus, we expect that the nonfaulty processes will need to attain common
knowledge.

However, the set of nonfaulty processesis not fixed, but varies from one
point to another. Hence the set of nonfaulty processesis a set described by
afunction S(r, m).

Weusetheformula ie S todenotethat i isinthevaryingset S.
Wetake i¢S tobetrueatapoint (r,m) if ieS(r,m).

Comment. Varying sets arise naturally in the analysis of various problems.

For example, when we consider a system in which processes can join and
leave the system dynamically , the set of processesin the system isvarying.

Similarly, the set of processes that have direct communication linksto a
given process in such a systemis varying.

Knowledge in Multi-Agent Systems 33
VI SBA

The varying set of most interest for us here is the set of nonfaulty
processes, which wedenoteby N.

Thus, theset N(r, m) consists of all processesthat are not faulty at
thepoint (r, m).

Motivation. Beforewe canrelate SBA to common knowledge, we need
to extend the definition of common knowledge to varying sets.
Givenavarying set S, anatural candidate would be

Ey definedas N g0

According to this definition, Ep would hold at apoint (r , m) if al the
processesin S(r, m) know ¢ at (r,m).

C, would then be defined interms of E, asusual.
But notethat in aformula EEg , or even K Egp thevaluethat the
varying set S takes on may change.

Knowledge in Multi-Agent Systems 34
VI SBA

For example, in evaluating the truth of K;Eg , thevalueof S may be
different at different pointsthat i considers possible.

How can we judge whether the proposed definitionsof E, and Cg are
appropriate ?

One criterion that is important for our application is whether we can
prove that if the membersof S have coordinated their actions, then this
fact is guaranteed to be common knowledge among the membersof  S.

Doesthe definition of Cg we havejust given have this property ?

For example, in SBA , it is necessarily the case that when a nonfaulty
process decides, then it is common knowledge among the nonfaulty
processes are deciding ? We would expect this to be the case, by analogy
with the situation for coordinated attack ( CA Proposition 1).

Knowledge in Multi-Agent Systems 35
VI SBA

Remark. It can be shown, if a nonfaulty process is guaranteed to know
that it is nonfaulty, then there is indeed such a common knowledge
among the nonfaulty processes.

But in general, a process does not know whether it isfaulty (at least, not
in the round that it fails).

The consequences of thislack of knowledge can be easily seenin the
case of general-omission failures.

Inthis case, it is not difficult to construct arun in which anonfaulty
process decides on thevalue 0 and yet considersit possible that the
nonfaulty processes are deciding on the value 1. Thisisaconsequence
of the fact, that the process does not know whether it or the other
processes are faulty. (Excersise)

We now define a hotion of common knowledge that is appropriate even
when the nonfaulty processes do not necessarily know that they are
nonfaulty.

Knowledge in Multi-Agent Systems 36
VI SBA




Let us go back to the Example 1. Note that while the nonfaulty process
in the example does not know that the nonfaulty processes are al
deciding on the value 0, it might know that if it is nonfaulty , then they
areal deciding onthevalue 0.

This motivates the following :
Definition. (Processes' believes)

Givenavaryingset S and aprocess i, define BSg to bean abbreviat-
ionfor Ki(ieS -> ¢).Thus,

(I,r,m)|= BSe iff (I,r',m)|= ¢ fordlpoints (r', m’) such that
r(m = r'(m) and ieS(r,m)

Comment. BS¢ holdsiff if i knowsthat ifitisin S, then ¢ holds.

Knowledge in Multi-Agent Systems 37
VI SBA

Itiseasy to check that B;S satisfiesthe axiomsof S5, except for the
Knowledge Axiom (BS¢ -> ¢).

Nevertheless, the Knowledge Axiom is satisfied at pointswhere i isin
thevaryingset S. Thatis,

if ier,m)then (I,r,m|= BSp > ¢

In general, it may be better to view B,S asanotion of belief rather than
knowledge.

Corresponding to the varying set S, we add new modal operators Eg and Cg .

Knowledge in Multi-Agent Systems 38
VI SBA

Definition. (Eg and Cg)
(i) Wedefine Egp as N;,sBS¢. Thus,
(I,r,m|= Eg iff (I,r,m)|= BSep fordl ieS(r,m)

S

Comment. In other words everyonein S knows ¢ at the point (r , m)
exactly if every processin S(r, m) knowsthat ifitisin S, then ¢ holds.

Notethat if S(r, m) isempty, then by definition Egp holds.

Thenotion Cg¢ isnow defined as an infinite conjunction in terms of Egp

(ii) Defining Egk*lgp inductively as EgEgp we have
(I,r,m|= Cg iff (I,r,m)|= EXp fork=1,2, ...

S

Knowledge in Multi-Agent Systems 39
VI SBA

Comment. Itiseasy to seethat if S isfixed, sothat S(r, m) =G for
some set of processes and for all points (r, m),then Cgp <-> Cgop.

Thus this definition extends our original definition of C5¢ to the case of
varying sets.

Let us now reconsider the case where a nonfaulty process is guaranteed to
know that it is nonfaulty. In this case, when S isthe varying set of
nonfaulty processes, it is clear that if process i isnonfaulty, then BS¢
isequivalentto KSe, for every formula ¢.

Consequently, results we obtain later (Theorem 1. and Corollary 1.) would
hold aso in the case had we used the first definition of common
knowledge for non-rigid sets.

Asinthecaseof Cg wecanrelate Cqp to anotion of reachability.

Knowledge in Multi-Agent Systems 40
VI SBA




Definition. (Sreachability)

(i) Wesay that apoint (r',m") is Sreachablefromapoint (r,m) in k
steps (k >0) if there exists a sequence of points

(r,m)=(ro, M), (ry, my), oy (f, M) = (1, )
suchthatforall |,l<k, thereexists ie(S(r;,,m)NnS (r,,, M,,)
with (r, m) ~(r.,, Myy) -

(ii) Wesay that (r', m') is Sreachablefrom (r, m) if (r', m) isSreach-
ablefrom (r, m) in k stepsfor some k.

Now we get the following analogue of lemmaon G-reachability:

Lemmal. (I,r,m)|= Cg iff (I,r',m)|= ¢ foral points (r', m")
that are  S-reachable from (r, m) .

Knowledge in Multi-Agent Systems 41
VI SBA

Using lemma 1. we can also show that Cg satisfies many properties of
the common knowledge operator Cg .

In particular, it satisfies all the axioms of S5 except possibly the
Knowledge Axiom. It also satisfies the Fixed-Point Axiom and Induction
Rule.

Moreover, if S(r, m) isnon-empty for al points (r , m) inan interpreted
system |, then Cg satisfiesthe Knowledge Axiomin | aswell.

Using C, , we can get an analogue of CA Proposition 1. for SBA.

Theorem 1. Let (y,7) bea ba-compatible interpreted context and let P
be a deterministic protocol . If [ =1 (P,y,r) satisies ¢%2 , then

if ||=decidingy(y) then C, (decidingy (Y))

Knowledge in Multi-Agent Systems 42
VI SBA

Comment. Aswith the coordinated attack, Theorem 1. does not hold for
nondeterministic protocols.

« But knowledge-based analysis shows that if we put some further
restrictionson y in appropriate contexts, then we can extend the Theorem
to nondeteministic protocols.

* Theorem 1. statesthatitisvalidinasystem | satifying o2 that
whenever the nonfaulty processes decide on thevalue vy, thenitisacom-
mon knowledge among the nonfaulty processes, i.e. C, (decidingy (y)
holds.

» Knowing this, we are interested how long it will take to attain common
knowledge in the contexts that are of interest to usfor SBA.

e Inthe case of SBA , the processes are not allowed to decide on the value
1 when al initial preferencesare 0. Thisimpliesthat when they decide on
thevalue 1 it must be the case that some process' initial preferencewas 1,
as stated in the following Corollary 2.

Knowledge in Multi-Agent Systems 43
VI SBA

Corollary 2. Let (y,z) bea ba-compatible interpreted context
and let P beadeterministic protocol . If =1 (P,y, ) satisfies
o | then

if ||=decidingy(y) then ||= Cy(Ey)

Comment. Neither Theorem 1. nor Corollary 2. would have held in
the case of general-omission failuresif we had used the first attempted
definition of common knowledge for non-rigid sets.

But still, there are variants of SBA for which the first definition is
appropriate.

Knowledge in Multi-Agent Systems 14
VI SBA




Theorem 2. There are deterministic protocols that attain SBA in t+1
rounds in each of the contextsin T2,

Theorem 3. If P isadeterministic protocol that satisfies o%2in a
context y ¢ I'a, r isafailure-freerunin R®(P,y,x),and P
attains SBA in t' roundsin r, then t' > t.

Knowledge in Multi-Agent Systems
VI SBA

Attaining SBA

Corollary 2. shows that attaining common knowledge that some process
had initial preference y isnecessary in order to decide on thevalue v .

One of our goals hereisto show that it is a sufficient condition aswell ,
by describing a program that attains SBA by deciding which of
C\(EOQ) or C\(E1) holds.

Notation. Let decided;, be an abbreviation for
decided, (0) v decided; (1)

so decided; istrueif process i hasmade adecision.

Knowledge in Multi-Agent Systems 46
VI SBA

Process i's program would have the following form:

case of

if —decided & BNC,(EO)
do decide (0)

if - decided & - BNC(EO) & BNC,(EL)
do decide (1)

if —decided & - BNC\(EQ) & - BNC(EL)
do sendall; (local state)

end case

Knowledge in Multi-Agent Systems
VI SBA

Comment. Recall that the action sendall; (local state) has the effect of
sending each process other than i the message /¢ if process i’sloca
dtateis/ .

Thus, messagesin SBA are sent accordingto FIP (Full Information
Protocal).

Notethat since BN¢g isan abbreviationfor K;(ieN -> ¢),test
suchas BNCy(EO) and BNC, (E1) areindeed knowledge tests. Thus
the above program is not a run-based program like standard programs
are, but it is a knowledge-based program.

We argued informally that , provided that all nonfaulty processes do
eventually decide, then aprogram of this form satisfies the
specification o%2. Now, we can state it as a Theorem.

Knowledge in Multi-Agent Systems 48
VI SBA




Theorem 4. If (y,x) isaba-compatible interpreted context, | is
consistent with the program SBA in (y, ), and Cy(EO) v C(El)is
attained ineveryrun r of |,then | satisfies o%2.

Moreover, the processesdecideinarun r of | attheround following
thefirst timethat Cy(EO) v C\(El) isattained.

Knowledge in Multi-Agent Systems 49
VI SBA




