
Knowledge in Multi-Agent Systems
VI SBA

1

Simultaneous Byzantine
Agreement

Knowledge in Multi-Agent Systems
VI SBA

2

Motivation.

So far, common knowledge has served as a tool for proving impossibility
results. Namely, the fact that there are no protocols solving the coordinated
attack problem or for agreeing to disagree.

We now present a case in which common knowledge is used in a positive
manner, as a tool for the design of efficient protocols.

The Coordinated Attack problem deals with the impact that unreliable
communication has on coordination in multi-agent protocols.

Another major source of difficulty in distributed system is the fact that
processes may fail during the execution of a protocol.

This can cause particular difficulties when it comes to coordinating actions
between different sites in such a system.

Knowledge in Multi-Agent Systems
VI SBA

3

We do not want two sites in an airline reservation system to sell the
same seat to two different people.

A bank must ensure that every transaction made at one of its automated
tellers is appropriately recorded in its central database.

Because the components of such a system do fail occasionally for
various reasons, it is important to program them in such a way that the
overall behaviour of the system will not be jeopardized by the failure of a
small number of its components.

The paradigmatic problem concerning reaching agreement at different sites
in a system in the presence of failures is the Byzantine agreement problem.

This problem can be informally described as follows.

Knowledge in Multi-Agent Systems
VI SBA

4

We have n generals, of which at most t < n might be
traitors. Each general initially prefers either attack or retreat
(although they are willing to do something other than what
they initially prefer) .

At the end of the protocol, they must reach agreement, so
that the loyal generals either all attack or all retreat.

The traitors can do whatever they like, we have no control
over them.

Although the generals can talk to each other (over reliable
channels), there is no broadcast facility. It is not possible
for a general to take a loudspeaker and announce his vote
to all the others.

There is a trivial protocol satisfying these conditions : one
where the generals retreat, no matter what their initial
preference.

In practice, however, this is not a satisfactory solution.

Knowledge in Multi-Agent Systems
VI SBA

5

A natural additional property to demand is that if all
generals initially prefer to do the same thing (either
attack or retreat), this is what they will agreed to do.

This condition eliminates trivial solutions such as
retreating no matter what.

If we are guaranteed that there are no traitors in
the system , then reaching agreement is trivial.

The generals all talk to each other , find out what
each of them initially prefers to do, and use some
uniform rule for reaching the a decision (for
example, the rule might be to attack if any general
initially prefers to attack).

In the presence of traitors, however, the situation
becomes considerably more complicated.

What to do if a traitor tells one loyal general that he
wants to attack and tells another that he wants to
retreat ?

Knowledge in Multi-Agent Systems
VI SBA

6

This problem turns out to be remarkably subtle and has been
studied at length in the literature.

We focus here on one particular variant of the problem, where we
require that not only do the generals decide, but that they decide
simultaneously. We refer to this variant as the Simultaneous
Byzantine agreement (SBA) problem.

Just as in the case of Coordinated Attack, we can show that in a
large class of interpreted contexts, the requirement of simultaneity
here leads to common knowledge.

We now define this class of interpreted contexts, which we call ba-
compatible. These ba-compatible contexts share many of the
features of ca-compatible contexts.

Knowledge in Multi-Agent Systems
VI SBA

7

Again, we want to make minimal assumptions about that processes`
(i.e. generals`) local states and have environment‘s state record the
actions performed.

The main difference is that we now want the environment to specify
which processes are faulty and how they are faulty.

This means that there are more possible actions that the environment
performs.

For now, we do not go into details of what these actions are. We will
turn to it later.

Knowledge in Multi-Agent Systems
VI SBA

8

Formally, we say that an interpreted context (γ , π) is ba-compatible
if it satisfies the following assumptions:

(1) For each process i = 1, … , n one of i‘s actions is denoted
decidei(y), for y = 1 or y = 0. We can think that decidei(0) as
representing a decision to retreat, while decidei(1) represents a
decision to attack.

(2) The environment´s actions include ones of the form (ae1 , … , aen).

(3) The components aei themselves are tuples, which describe which
messages sent by the process j are delivered to process i in that
round, whether or not i fails in that round, which we capture by a
faili action, and its faulty behaviour if it does fail.

We discuss later on how this faulty behaviour is described, since this
depends on the type of faulty behaviour we allow.

Definition. (ba-compatible contexts)

Knowledge in Multi-Agent Systems
VI SBA

9

(6) γ is a recording context. Note that recording context allows us to
tell from the environment‘s state which processes are faulty, by seeing
which faili actions have been performed.

(7) Process i‘s initial state is a tuple of the form (xi , ….) where xi

is either 0 (retreat) or 1 (attack) . Thus, xi represents i‘s initial
preferences.

(8) We also assume that process i‘s local state records whether
process i has performed an action decidei(y) .

(5) We say that process i is faulty in round k of run r (or at the
point (r , k)) if process i failed in some round k‘ up to k of run r.
Otherwise, we say that i is nonfaulty or correct.

(4) We say that process i fails in round k of run r if the
environment‘s action at this round has a faili component.

Knowledge in Multi-Agent Systems
VI SBA

10

(9) The environment‘s state includes the tuple (x1 , … , xn) , where xi is
either 0 or 1 representing the processes initial preferences.

(10) The language includes the propositions decidedi(y), decidedN(y), and
Ey , for all i and Boolean y .

We define π so that

decidedi(y) is true if the action decidei(y) was performed at any
previous round ,

decidedN(y) is true if each nonfaulty process i has performed the action
decidei(y) ,

Ey is true if xi = y for some process i .

decidingN(y) is defined as an abbreviation of

¬ decidedN(y) & O decidedN(y)

Knowledge in Multi-Agent Systems
VI SBA

11

Comment. All the results of this section hold even without the
assumption (8), but it turns out to be convenient for results in later
sections. We make no other assumptions about the form of the
processes‘local states.

(11) recall that the nonfaulty processes can be determined from the
environment‘s local state.

Definition. (Ba-compatible interpreted systems)

A ba-compatible interpreted system is one of the form ISrep(P , γ ,π)
where P is a protocol and (γ ,π) is a ba-compatible interpreted
context.

Knowledge in Multi-Agent Systems
VI SBA

12

As we said earlier, we intend to focus here on the simultaneous
Byzantine agreement (SBA).

Comment. In a ba-compatible interpreted system, we can talk about
processes‘ initial preferences and their decisions, so it makes sense to
talk about SBA.

Knowledge in Multi-Agent Systems
VI SBA

13

Definition. (The specifications σsba)

The specification σsba is run-based. It is satisfied by all ba-compati-
ble interpreted systems I such that each run satisfies

• Decision: every process i that is nonfaulty in r performs exactly
one decidei action in r ,

• Agreement: the nonfaulty processes all decide the same value,

• Validity: if all processes have the same initial preference x , then all
nonfaulty processes decide on the value x ,

• Simultaneity: the nonfaulty processes all decide simultaneously, i.e. in
the same round.

Knowledge in Multi-Agent Systems
VI SBA

14

Comment.

•The first clause ensures that nonfaulty processes decide exactly once,

• the second one ensures that their decisions are in agreement,

• the third ensures the decision is related to the initial preferences in a
nontrivial way, and

• the fourth guarantees that the decision is simultaneous.

Note that the third clause prevents trivial solutions such as one in
which everyone simply always decides on the value 0 in the first
round and halts.

Indeed, the third clause ensures that for any given y in {0 , 1} the
processes may decide on the value y only if at least one process had
y as its initial preference.

Knowledge in Multi-Agent Systems
VI SBA

15

Definition. (Protocols for SBA)

(i) We say that P is a protocol for SBA or that P attains SBA , in a
ba-compatible interpreted context (γ ,π) if P satisfies σsba in
(γ ,π) .

(ii) If r is a run in ISrep(P , γ ,π) , we say that P attains SBA in
k rounds in r if (I ,r ,k) |= decidingN .

(Note that this means that a nonfaulty process i actually performs the
action decidei in round k + 1 .)

(iii) We say that P attains SBA in k rounds if P attains SBA
in k rounds in all runs of ISrep(P , γ ,π) .

Comment. It should be clear from the specifications and descriptions of
the problems that SBA and Coordinated Attack are closely related.

Knowledge in Multi-Agent Systems
VI SBA

16

• we assume that each general i has initial preference xi

regarding whether or not he would like to attack,

• we could then restate the coordinated attack problem by requiring
that if both generals initially prefer to attack, then they should
attack, while if both initially prefer to retreat, they should retreat.

• While this version of the coordinated attack is slightly different
from the one, we considered, we can easily prove results analogous
to Theorem 1. and Corollary 2. for it.

• In fact, it is easy to show that if P is a deterministic protocol for
this modified version of the coordinated attack in an interpreted
context (γ ,π) allowing all four configuration of initial
preferences, then Irep(P , γ ,π) satisfies σca . (Excercise)

Indeed, we can reformulate Coordinated Attack slightly to resemble
SBA even more as follows:

Knowledge in Multi-Agent Systems
VI SBA

17

Despite these similarities, there are some significant differences
between SBA and CA, at least in the contexts of most iterest to
us.

• In Coordinated Attack, both generals are assumed to be reliable :
the problem is with the communication links.

• In SBA, we are mainly interested in contexts where correct generals
have no problem communicating. Thus, we focus on contexts where
communication is reliable and immediate, so that a message is
guaranteed to arrive in the same rou nd in which it is sent, provided
that neither the sender nor the in tended recipient of the message is
faulty.

• The problem in these contexts is not with communication, but with
the faulty processes. [end of Comment]

Knowledge in Multi-Agent Systems
VI SBA

18

The Byzantine agreement problem is sensitive to the type of faulty
behaviour a faulty process can display. The literature has concentrated
on three basic failure modes.

(1) Crash failures : a faulty process behaves according to the protocol,
except that it may crash at some point, after which it sends no messages.
In the round in which the process fails, the process may perform an
arbitrary subset of the actions it is supposed to perform, according to the
protocol it is following. In particular, it may send only a subset of
messages the it is supposed to send according to its protocol.

(2) Omission failures : a faulty process behaves according to the
protocol, except that it may omit to send or receive an arbitrary set of
messages in any given round. We sometimes refer to this case as the
general-omission failure mode.

Knowledge in Multi-Agent Systems
VI SBA

19

(3) Byzantine failures : faulty processes may deviate from the
protocol in an arbitrary fashion : they may „lie,“ send deceiving
messages, and collude to fool the nonfaulty processes in the most
malicious ways.
Comment. In practice,

• crash failures occur quite regularly, as a result of mechanical and
electrical failures. Crash failures can be viewed as a restricted type of
omission failures (a process omits to send all messages from a certain
point on.

• Omissions failures are often result of communication problems.
Omission failures in turn can be viewed as a restricted type of the
Byzantine failures to be defined below.

• Byzantine failures represent the worst possible failures, where we can
make no assumptions on behaviour of faulty processes.

• We model these failures in terms of the environment‘s actions.

Knowledge in Multi-Agent Systems
VI SBA

20

What we may expect ? (A short review of results)

Assume that there are n processes and that at most t of them are in
any time faulty.

(i) It is known that there are protocols that attain SBA in t + 1 rounds
in all these modes, provided that communication is reliable and
immediate.

(ii) In the case of Byzantine failures i.e. if failed processes may lie, there
is a constraint on the relationship between the total number n of
processes in the system and the upper bound t on the number of faulty
processes:

There is a protocol for SBA in this case iff n > 3t .

(iii) Moreover,
there is no protocol that attains SBA in fewer than t + 1 rounds.

In fact, it is known that any protocol for SBA in one of these failure
modes requires at least t + 1 rounds to attain SBA in runs where are
no failures at all.

Knowledge in Multi-Agent Systems
VI SBA

21

Comment. It might seem surprising that, even if we consider such
relatively benign failures as crash failures, we still have to take t + 1
rounds to reach agreement even in runs where there are no faulty
processes.
As the following example shows, the problem here, as in the case of
Coordinated Attack is not what does happen, but what might happen.

Example 1. (Attaining SBA - the case of Crash Failures)

Suppose that n = 3 and t = 1 , and we restrict to crash failures.
Consider a run where all the processes have initial preference 0 and
there are no failures.

By the Validity requirement, this means, that all the processes must decide
on the value 0 .

Suppose that in round 1 every process sends its initial preference to
every other process . Thus, at time 1 , all the processes know that every
process initially preferred 0 .

Knowledge in Multi-Agent Systems
VI SBA

22

A failed process is assumed to have no information, and we mark this by
the letter X.

Otherwise an entry in the table can be either 0, 1, or # , where we use
a # in row i of column j to represent the fact that j did not receive
information about i‘s initial preference xi (because process i crashed
before sending j a message).

Since we are considering only crash failures, all the processes are telling truth
here. This means that all the processes know at time 1 that they must all
ultimately decide on the value 0 .

Why are they not able to decide on the value right away ?

We can represent the situation at time 1 in a run using a 3 x 3 table,
where each column represents information that one process has at time 1
about the initial preferences x1 , x 2 , and x3 (see figure SBA 1).

Knowledge in Multi-Agent Systems
VI SBA

23

1 2 3 1 2 3 1 2 3

x1 0 0 0 x1 0 X 0 x1 0 X 0

x2 0 0 0 x2 0 X * x2 1 X *

x3 0 0 0 x3 0 X 0 x3 0 X 0

T1 T2 T3

x1 0 0 0 x1 1 1 1

x2 1 1 1 x2 1 1 1

x3 0 0 0 … x3 1 1 1

T4 T10

Figure SBA 1.

In the run, we just described, the situation is represented by a table
whose all entries are 0 ; this is table T1 in the figure SBA 1.

Knowledge in Multi-Agent Systems
VI SBA

24

In particular, although in the situation depicted by T1 process 1 received
a 0 from all processes, it is possible, as far as process 1 is concerned, that
process 3 did not receive a message at all from process 2 ; this could
happen if 2 crashed after sending a message to 1 , but before sending a
message to 3 ; this situation is depicted by table T2 .

Note that in T1 process 1 does not consider it possible that process 2 told
3 that its initial preference is 1 . We are not allowing lying here ; this would
require Byzantine failures .

Clearly, process 1 cannot distinguish T1 from T2 ; it has the same local
state in both situations which is described by the first column of the table.

Recall that the nonfaulty processes must all decide simultaneously.

Knowledge in Multi-Agent Systems
VI SBA

25

Now in the situation described by T2 , process 3 , which did not get a
message from process 2 , considers it possible that 2‘s initial prefer-
ence x2 is 1 , and that 2 passed x2 on to process 1 .

Thus, in the situation described by T2 , process 3 considers the situation
described by T3 possible.

Finally, in T3 process 1 does not know of any failure , and considers
T4 a possibility.

Notice that our tour from T1 to T4 involved „silencing“ process 2 ,
changing its initial preference x2 , and „reviving“ the process. By applying
this type of reasoning it is possible to do the same to process 3 and then to
process 1 .

As a result, we can construct a sequence of tables T1 , … , T10 such that
T1 tis the table all of whose entries are 0 and T10 is a table whose all
entries are 1 .

Knowledge in Multi-Agent Systems
VI SBA

26

For each consecutive pair of tables Ti , Ti+1 , with i < 10 , there is
some process that cannot distinguish the situation described by Ti and
Ti+1 and is correct in both these situations .

Now suppose that some correct process decides at time 1 on the value 0
in the situation described by table T1 . By the agreement and simultane-
ity requirements of SBA , all the processes must decide at time 1 on
the value 0 in this situation.

Since process 1 cannot distinguish the situation described by T1 from
T2 , process 1 must decide at time 1 on the value 0 in the situation
described by T2 . Again, by the agreement and simultaneity require-
ments, the two processes that are correct in this case (1 and 3) must
decide at time 1 on the value 0 in the situation described by T3 .

Continuing this argument, we get that all processes decide at time 1 on
the value 0 in the situation described by T10 .

Knowledge in Multi-Agent Systems
VI SBA

27

But in the situation described by T10 , all the processes are correct and
have 1 as their initial preference. The fact that they decide on the value
0 in T10 contradicts the validity requirement ! (End of Example 1.)

Comment. As should be clear from our discussion, simultaneity plays a
crucial role here. Our claim would not hold had we not require simultane-
ity.

To see why, suppose again that process 1 decides on value 0 at time 1 in
the situation described by table T1 .

Since process 1 cannot distinguish the situation described by T1 from that
described by T2 , we know that process 1 also decides on the value 0 in
the latter situation.

Knowledge in Multi-Agent Systems
VI SBA

28

Without the requirement of simultaneity, we cannot, however, conclude
that process 3 decides on the value 0 in the situation described by T2

although we can conclude that process 3 will eventually decide on the
value 0 in this situation. (This may, however, require further
messages from process 1 .)

Knowledge in Multi-Agent Systems
VI SBA

29

We have stated (but not proved) that for any given number n of
processes and an upper bound t , for the number of faulty processes
that t + 1 rounds are required to attain SBA even if there are no
failures.

It might seem that if we need t + 1 rounds, if there are no failures,
things could be worse if there are failures.

We shall show that this is not the case.

In fact, by doing a knowledge-based analysis of SBA , we can
completely characterize the number of rounds that are required to
reach agreement.

How many rounds are needed in the general case ?

Knowledge in Multi-Agent Systems
VI SBA

30

Motivation. The validity requirement of SBA implies, that if all initial
preferences are 1 , then the nonfaulty processes should decide on the
value 1.
In particular, for a process to decide on the value 0 , the process must
know that not all initial preferences are 1 . Since the only possible initial
preferences are 0 and 1 , this says that for a process to decide on the
value 0 , the process must know that some initial preference is 0 .

Of course, knowledge that some initial preference is v is not sufficient
for a process to decide on the value v . Otherwise, a process could
simply always decide on its initial preference, creating a violation of the
agreement property in cases where two processes had different initial
preferences.

In fact, Example 1. shows that even if a process knows that all initial
preferences are 0 , this is not sufficient to decide on the value 0 .

Knowledge in Multi-Agent Systems
VI SBA

31

What other knowledge do the processes need ?

A digression (coordinated Attack) Just as SBA requires simultaneity
(namely simultaneous attacking), so the coordinated attack problem
requires simultaneity, as well. (Namely simultaneous attacking.)

CA Corollary 1. of coordinated attack problem tells us that if the
generals attack simultaneously, then the fact that they are both attacking
must be common knowledge.

It is natural to expect that SBA to require attaining common knowledge
as well. The question is, which group of processes actually attains
common knowledge ?

It is not the set of all processes, since we do not place any require-
ments on the actions of the faulty processes.

The SBA problem specification σsba requires only that the nonfaulty
processes decide on the appropriate value. SBA therefore involves
coordinating the actions of nonfaulty processes.

Knowledge in Multi-Agent Systems
VI SBA

32

Sets of Nonfaulty Processes

Definition. (Rigid and varying sets)

Let R be a system over a set of global states of n processes. Let S be
a function that gives to every point (r , m) a subset S(r , m) of the set
{1, 2, … , n} of processes. We assume that S(r , m) is a set of nonfaulty
processes at point (r , m) . By a misuse of terminology, we shall think that
the function S is a set varying in time.

We say that S is a rigid set if it is constant, i.e. if there is a subset G
of the set of processes such that S(r , m) = G for every point (r , m) .

Otherwise, we say that S is a varying set.

Motivation. The set of nonfaulty proceses may change during each run.

Knowledge in Multi-Agent Systems
VI SBA

33

Thus, we expect that the nonfaulty processes will need to attain common
knowledge.

However, the set of nonfaulty processes is not fixed, but varies from one
point to another. Hence the set of nonfaulty processes is a set described by
a function S(r , m).

We use the formula i ε S to denote that i is in the varying set S .

We take i ε S to be true at a point (r , m) if i ε S (r , m).

Comment. Varying sets arise naturally in the analysis of various problems.

For example, when we consider a system in which processes can join and
leave the system dynamically , the set of processes in the system is varying.

Similarly, the set of processes that have direct communication links to a
given process in such a system is varying.

Knowledge in Multi-Agent Systems
VI SBA

34

The varying set of most interest for us here is the set of nonfaulty
processes, which we denote by N .

Thus, the set N(r , m) consists of all processes that are not faulty at
the point (r , m) .

Motivation. Before we can relate SBA to common knowledge, we need
to extend the definition of common knowledge to varying sets.

Given a varying set S , a natural candidate would be

Esφ defined as I iεS φ

According to this definition , Esφ would hold at a point (r , m) if all the
processes in S (r , m) know φ at (r , m) .

CS would then be defined in terms of Es as usual.

But note that in a formula EsEsφ , or even Ki Esφ the value that the
varying set S takes on may change.

Knowledge in Multi-Agent Systems
VI SBA

35

For example, in evaluating the truth of Ki Esφ , the value of S may be
different at different points that i considers possible.

How can we judge whether the proposed definitions of Es and CS are
appropriate ?

One criterion that is important for our application is whether we can
prove that if the members of S have coordinated their actions, then this
fact is guaranteed to be common knowledge among the members of S .

Does the definition of CS we have just given have this property ?

For example, in SBA , it is necessarily the case that when a nonfaulty
process decides, then it is common knowledge among the nonfaulty
processes are deciding ? We would expect this to be the case, by analogy
with the situation for coordinated attack (CA Proposition 1).

Knowledge in Multi-Agent Systems
VI SBA

36

Remark. It can be shown, if a nonfaulty process is guaranteed to know
that it is nonfaulty, then there is indeed such a common knowledge
among the nonfaulty processes.

But in general, a process does not know whether it is faulty (at least, not
in the round that it fails).

The consequences of this lack of knowledge can be easily seen in the
case of general-omission failures.

In this case, it is not difficult to construct a run in which a nonfaulty
process decides on the value 0 and yet considers it possible that the
nonfaulty processes are deciding on the value 1. This is a consequence
of the fact, that the process does not know whether it or the other
processes are faulty. (Excersise)

We now define a notion of common knowledge that is appropriate even
when the nonfaulty processes do not necessarily know that they are
nonfaulty.

Knowledge in Multi-Agent Systems
VI SBA

37

Let us go back to the Example 1. Note that while the nonfaulty process
in the example does not know that the nonfaulty processes are all
deciding on the value 0 , it might know that if it is nonfaulty , then they
are all deciding on the value 0 .

This motivates the following :

Definition. (Processes‘ believes)

Given a varying set S and a process i , define Bi
S φ to be an abbreviat-

ion for Ki (i ε S -> φ) . Thus,

(I , r , m) |= Bi
S φ iff (I , r‘ , m‘) |= φ for all points (r‘ , m‘) such that

ri (m) = ri‘ (m‘) and i ε S(r‘, m‘)

Comment. Bi
S φ holds iff if i knows that if it is in S , then φ holds .

Knowledge in Multi-Agent Systems
VI SBA

38

It is easy to check that Bi
S satisfies the axioms of S5, except for the

Knowledge Axiom (Bi
S φ -> φ).

Nevertheless, the Knowledge Axiom is satisfied at points where i is in
the varying set S . That is,

if i ε S(r‘, m‘) then (I , r , m) |= Bi
S φ -> φ

In general, it may be better to view Bi
S as a notion of belief rather than

knowledge.

Corresponding to the varying set S , we add new modal operators ES and CS .

Knowledge in Multi-Agent Systems
VI SBA

39

Definition. (ES and CS)

(i) We define ESφ as I i ε S Bi
S φ . Thus,

(I , r , m) |= Esφ iff (I , r , m) |= Bi
S φ for all i ε S (r , m)

Comment. In other words everyone in S knows φ at the point (r , m)
exactly if every process in S (r , m) knows that if it is in S , then φ holds.

Note that if S (r , m) is empty, then by definition ESφ holds.

The notion CSφ is now defined as an infinite conjunction in terms of ESφ
.

(ii) Defining ES
k+1φ inductively as ES ES

kφ we have

(I , r , m) |= Csφ iff (I , r , m) |= Es
kφ for k = 1, 2, ...

Knowledge in Multi-Agent Systems
VI SBA

40

Thus this definition extends our original definition of CGφ to the case of
varying sets.

Let us now reconsider the case where a nonfaulty process is guaranteed to
know that it is nonfaulty. In this case, when S is the varying set of
nonfaulty processes, it is clear that if process i is nonfaulty, then Bi

S φ
is equivalent to Ki

S φ , for every formula φ .

Consequently, results we obtain later (Theorem 1. and Corollary 1.) would
hold also in the case had we used the first definition of common
knowledge for non-rigid sets.

As in the case of CG we can relate CSφ to a notion of reachability.

Comment. It is easy to see that if S is fixed, so that S (r , m) = G for
some set of processes and for all points (r , m) , then CSφ < - > CGφ .

Knowledge in Multi-Agent Systems
VI SBA

41

Definition. (S-reachability)

(i) We say that a point (r‘,m‘) is S-reachable from a point (r , m) in k
steps (k > 0) if there exists a sequence of points

. (r , m) = (r0 , m0) , (r1 , m1) , … , (rk , mk) = (r‘, m‘)

such that for all l , l < k , there exists i ε (S (rl , ml) S (rl+1 , ml+1))
with (rl , ml) ~i (rl+1 , ml+1) .

∩

Now we get the following analogue of lemma on G-reachability:

Lemma 1. (I , r , m) |= Csφ iff (I , r‘, m‘) |= φ for all points (r‘, m‘)
that are S-reachable from (r , m) .

(ii) We say that (r‘, m‘) is S-reachable from (r , m) if (r‘, m‘) is S-reach-
able from (r , m) in k steps for some k .

Knowledge in Multi-Agent Systems
VI SBA

42

Using lemma 1. we can also show that CS satisfies many properties of
the common knowledge operator CG .

In particular, it satisfies all the axioms of S5 except possibly the
Knowledge Axiom. It also satisfies the Fixed-Point Axiom and Induction
Rule.

Moreover, if S (r , m) is non-empty for all points (r , m) in an interpreted
system I , then CS satisfies the Knowledge Axiom in I as well.

Using CN , we can get an analogue of CA Proposition 1. for SBA.

Theorem 1. Let (γ , π) be a ba-compatible interpreted context and let P
be a deterministic protocol . If I = Irep (P , γ , π) satisfies σsba , then

if I |= decidingN (y) then CN (decidingN (y))

Knowledge in Multi-Agent Systems
VI SBA

43

Comment. As with the coordinated attack, Theorem 1. does not hold for
nondeterministic protocols.

• But knowledge-based analysis shows that if we put some further
restrictions on ψ in appropriate contexts, then we can extend the Theorem
to nondeteministic protocols.

• Theorem 1. states that it is valid in a system I satifying σsba that
whenever the nonfaulty processes decide on the value y , then it is a com-
mon knowledge among the nonfaulty processes, i.e. CN (decidingN (y)
holds.

• Knowing this, we are interested how long it will take to attain common
knowledge in the contexts that are of interest to us for SBA.

• In the case of SBA , the processes are not allowed to decide on the value
1 when all initial preferences are 0 . This implies that when they decide on
the value 1 it must be the case that some process‘ initial preference was 1,
as stated in the following Corollary 2.

Knowledge in Multi-Agent Systems
VI SBA

44

Corollary 2. Let (γ , π) be a ba-compatible interpreted context
and let P be a deterministic protocol . If I = Irep (P , γ , π) satisfies
σsba , then

if I |= decidingN (y) then I |= CN (Ey)

Comment. Neither Theorem 1. nor Corollary 2. would have held in
the case of general-omission failures if we had used the first attempted
definition of common knowledge for non-rigid sets.

But still, there are variants of SBA for which the first definition is
appropriate.

Knowledge in Multi-Agent Systems
VI SBA

45

Theorem 2. There are deterministic protocols that attain SBA in t +1
rounds in each of the contexts in Γsba .

Theorem 3. If P is a deterministic protocol that satisfies σsba in a
context γ ε Γsba , r is a failure-free run in Rrep (P , γ , π) , and P
attains SBA in t‘ rounds in r , then t‘ > t .

Knowledge in Multi-Agent Systems
VI SBA

46

Attaining SBA

Corollary 2. shows that attaining common knowledge that some process
had initial preference y is necessary in order to decide on the value y .

One of our goals here is to show that it is a sufficient condition as well ,
by describing a program that attains SBA by deciding which of
CN(E0) or CN(E1) holds.

Notation. Let decidedi be an abbreviation for

decidedi (0) v decidedi (1)

so decidedi is true if process i has made a decision.

Knowledge in Multi-Agent Systems
VI SBA

47

Process’ i’s program would have the following form:

case of

if ¬ decidedi & Bi
N CN (E0)

. do decidei (0)

if ¬ decidedi & ¬ Bi
N CN (E0) & Bi

N CN (E1)
. do decidei (1)

if ¬ decidedi & ¬ Bi
N CN (E0) & ¬ Bi

N CN (E1)
. do sendalli (local state)

end case

Knowledge in Multi-Agent Systems
VI SBA

48

Thus, messages in SBA are sent according to FIP (Full Information
Protocol).

Note that since Bi
N φ is an abbreviation for Ki (i ε N -> φ) , test

such as Bi
N CN (E0) and Bi

N CN (E1) are indeed knowledge tests. Thus
the above program is not a run-based program like standard programs
are , but it is a knowledge-based program.

We argued informally that , provided that all nonfaulty processes do
eventually decide , then a program of this form satisfies the
specification σsba . Now, we can state it as a Theorem.

Comment. Recall that the action sendalli (local state) has the effect of
sending each process other than i the message l if process i’s local
state is l .

Knowledge in Multi-Agent Systems
VI SBA

49

Theorem 4. If (γ , π) is a ba-compatible interpreted context , I is
consistent with the program SBA in (γ , π), and CN (E0) v CN (E1) is
attained in every run r of I , then I satisfies σsba .

Moreover, the processes decide in a run r of I at the round following
the first time that CN (E0) v CN (E1) is attained.

