
Knowledge in Multi-Agent Systems
IVc

1

Aplication:

Games and Message-Passing Systems

Knowledge in Multi-Agent Systems
IVc

2

Game Trees.

The goal of game theory is to understand games and how
they should be played. To a game theorist, a game is an
abstraction of a situation where players interact by making
“moves”. Based on the moves made by the players, there is
an outcome, or payoff, to the game.

It should be clear that standard games such as poker, chess,
and bridge are games in this sense. For example, the “moves”
in bridge consist of bidding and playing the cards.

There are rules for computing how many points each side
gets at the end of a hand of bridge. This is the payoff.

Knowledge in Multi-Agent Systems
IVc

3

Standard economic interactions such as trading and
bargaining can also be viewed as games, where players
make moves a receive payoffs.

Games with several moves in sequence are typically
described by means of a game tree.

We shall illustrate it by a game tree of Game 1.

Knowledge in Multi-Agent Systems
IVc

4

Game 1

Knowledge in Multi-Agent Systems
IVc

5

2) 1, (b

 2 a
1) 1, (b

 1
2) (-3, b

 a
4) 3, (b 2

2

2

1

2

1

1

•
•

•
•

•
•

•

Knowledge in Multi-Agent Systems
IVc

6

In the Game 1, there are two players, 1 and 2, who
move alternately. Player 1 moves first, and has a choice
of taking action a1 or a2 .
This is indicated by labeling the root of the tree with a 1,
and labeling the two edges coming out of the root with
a1 and a2 .
After player 1 moves, it is player 2’s turn. In Game 1,
we assume that player 2 knows the move made by play -
er 1 before she moves. At each of the nodes labeled with a
2, player 2 can choose between taking action b1 or b2 .

In general, player 2’s set of possible actions after player 1 takes the action a1
may be different from player’s 2 actions after player 1 takes the action a2.

In general, player 2’s set of possible actions after player 1 takes the action a1
may be different from player’s 2 actions after player 1 takes the action a2.

Knowledge in Multi-Agent Systems
IVc

7

After these moves have been made, the players receive a
payoff. The leaves of the tree are labeled with the payoffs.

In the Game 1, if player 1 takes action a1 and player 2
takes action b1 , then player 1 gets a payoff of 3 , while
player 2 gets a payoff of 4 (denoted by the pair (3, 4)).

A play of the game corresponds to a path in the game tree,
i.e. it is a complete sequence of moves by the players from
start to finish.
It should be clear, that at least in principle, chess could also be described by a
game tree. The nodes represent board positions, and the leaves of the tree
represent positions where the game ended. If we suppose that all games are
played to the end, then the moves at each node are the legal chess moves in
this position. There are only three possible outcomes: a win for White (player 1),
a win for Black (player 2, or a draw. The plays in this game tree correspond to
the possible (complete) games of chess.

It should be clear, that at least in principle, chess could also be described by a
game tree. The nodes represent board positions, and the leaves of the tree
represent positions where the game ended. If we suppose that all games are
played to the end, then the moves at each node are the legal chess moves in
this position. There are only three possible outcomes: a win for White (player 1),
a win for Black (player 2, or a draw. The plays in this game tree correspond to
the possible (complete) games of chess.

Knowledge in Multi-Agent Systems
IVc

8

The Game 1 represented by its game tree is an example of
a game of perfect information . Every event relevant to
the game takes place in public.

A player knows all the moves that have been made before
she moves. Chess is another example of a game with
perfect information. By way of contrast, bridge and poker
are not games of perfect information.

One of the key issues studied by game theorists is how the
information available to the players when they move
affects the outcome of the game. Game theorists are inter-
ested mainly in games where agents do not have perfect
information.

Knowledge in Multi-Agent Systems
IVc

9

Game 2

Knowledge in Multi-Agent Systems
IVc

10

2) 1, (b

 2 a
1) 1, (b

 1
2) (-3, b

 a
4) 3, (b 2

2

2

1

2

1

1

•
•

•
•

•
•

•

Knowledge in Multi-Agent Systems
IVc

11

The game tree for the Game 2 is identical to the game tree for
the Game 1, except that the two nodes where player 2 moves
are enclosed by an oval. This indicates that the two nodes are
indistinguishable to player 2, or, as the game theorists would
say, they are in the same information set.

This means that when player 2 makes her move in this game,
she does not know whether player 1 choose action a1 or a2 .

In general, game theorists use the information set to represent
the information that a player has at a given point in the game.

Knowledge in Multi-Agent Systems
IVc

12

It is assumed that .

(a) a player always knows when it is her turn to move, .

(b) player i has the same choices of actions at all the nodes
in her information set.

By (a) there cannot be two nodes in player’s i information set, such that
player i is supposed to move at one of the nodes and not at the other.

(b) says that it does not make sense for a player to be able to perform different
actions at nodes she cannot distinguish. As we can see from the game tree for
the Game 2, the set of actions from which player 2 must choose is identical at
the nodes where she moves. In contrast to Game 1, where the set of possible
moves did not have to be identical, in our example they do.

By (a) there cannot be two nodes in player’s i information set, such that
player i is supposed to move at one of the nodes and not at the other.

(b) says that it does not make sense for a player to be able to perform different
actions at nodes she cannot distinguish. As we can see from the game tree for
the Game 2, the set of actions from which player 2 must choose is identical at
the nodes where she moves. In contrast to Game 1, where the set of possible
moves did not have to be identical, in our example they do.

Knowledge in Multi-Agent Systems
IVc

13

Perhaps the most obvious way of modeling Game 1 is to
take each play as a run. Since we assume that G1 is a
game of perfect information, what happens at each state
must be reflected in the player’s states.

• Each player’s initial state has the form <>, representing
the fact that nothing has yet happened.

• After player 1’s move, the local states of both players
encode the move the player 1 has made. Thus the local
states of both players have the form < ai >, for i = 1, 2.

•Finally, after player 2’s move, we assume that both
player’s states include player 2’s move, and the payoff.

Knowledge in Multi-Agent Systems
IVc

14

We can ignore the environment’s state here. We presume
that the player’s local states include all the information of
interest of us. Thus we take the environment’s state to be λ .

We call the resulting system R1 .

We remark that in a more general settings, game theorists view “nature”, or
the environment, as another player in the game. In this case it may be
appropriate to have a more complicated environment’s state.

We remark that in a more general settings, game theorists view “nature”, or
the environment, as another player in the game. In this case it may be
appropriate to have a more complicated environment’s state.

Note that as we have described R1 , both players have
identical local states at all points. This is a formal count-
erpart to our assumption that G1 is a game of perfect
information.

Knowledge in Multi-Agent Systems
IVc

15

It is easy to show that the moves made, as well as the
payoffs received by the players, are common knowledge
once they take place.

In the games of perfect information there is very little uncertainty, which leads
to such a simple model. We remark that even in games of perfect information
such as this one, the players usually follow particular strategies which are not
necessarily common knowledge. Defining strategies and capturing them in the
model will be one of the subjects treated later.

In the games of perfect information there is very little uncertainty, which leads
to such a simple model. We remark that even in games of perfect information
such as this one, the players usually follow particular strategies which are not
necessarily common knowledge. Defining strategies and capturing them in the
model will be one of the subjects treated later.

What system does G2 correspond to ?

• Again, we assume that each play corresponds to a run,
and the player’s initial states have form <>.

• Just as in R1 , we can also assume that player 1’s local
state includes her move after she made it. We do not want

Knowledge in Multi-Agent Systems
IVc

16

player 2’s local state to include this information.

• Nevertheless, player 2’s state must encode the fact that
player 1 has moved.

• For definiteness, we assume that immediately after
player 1’s move, player 2’s state has the form <move>,
which indicates that it is player 2’s turn to move.

• We assume that after player 2’s move both player’s
states include the move and the payoff.

This gives us the system R2 .

Knowledge in Multi-Agent Systems
IVc

17

The key difference between G1 and G2 is that player 2 does not know what
player 1’s is after she has made it. Player 2’s state must be different before player
1 moves and after player 1 moves, for otherwise she would not know that it is her
turn to move. Essentially, the <move> is just an indication that it is player 2’s
move.

The key difference between G1 and G2 is that player 2 does not know what
player 1’s is after she has made it. Player 2’s state must be different before player
1 moves and after player 1 moves, for otherwise she would not know that it is her
turn to move. Essentially, the <move> is just an indication that it is player 2’s
move.

In the case that player 2’s local state at the end of the game
G2 includes her move and the payoff (for both players),
player 2 may discover what player 1’s move was. In part-
icular, it is true in our setting, where the payoffs are differ-
ent for every play.

Knowledge in Multi-Agent Systems
IVc

18

It is obvious at this point that we can capture a situation in
which players are not informed about the payoffs immed-
iately, or perhaps that each player is informed of her or his
own payoff and not the other’s. All we need is to modify
what goes into a players’local state.

The systems R1 and R2 correspond to games G1 and G2
in that each play of the game is captured by one of the runs
and every run captures a possible play of the game.

Of course, these systems are not the only possible represent-
ations of these games. For example, we could have used the
information sets as local states of the agents. Another possib-
le representation includes a representation of the strategy of
the players.

Knowledge in Multi-Agent Systems
IVc

19

Synchronous Systems

A standard assumption in many systems is that agents have
access to a shared clock, or that actions take place in rounds
or steps, and agents know what round it is at all times.

Thus, it is implicitely assumed that the time is common
knowledge, so that all the agents are running in synchrony.

This assumption has already arisen in some of the systems we have consider-
ed. In particular, we implicitely made this assumption in our presentation of the

muddy children puzzle and of the two games G1 and G2 .

This assumption has already arisen in some of the systems we have consider-
ed. In particular, we implicitely made this assumption in our presentation of the

muddy children puzzle and of the two games G1 and G2 .

In computer science, many protocols are designed so that
they proceed in rounds where no agent starts round (m+1)
before all agents finish round m .

Knowledge in Multi-Agent Systems
IVc

20

How can we capture synchrony in our framework? Since an
agent’s knowledge is determined by his local state, his know-
ledge of the time must be encoded somehow in the local state.
This global clock need not measure “real time”.

Definition. (Synchronous Systems)

(i) We say that R is a synchronous system if for all agents and
points (r,m) and (r’,m’) in R, if (r,m) ~i (r’,m’), then
m = m’.

(ii) We say that an interpreted system I = (R, π) is
synchronous if R is.

Knowledge in Multi-Agent Systems
IVc

21

(i) expresses our intuition that in a synchronous system,
each agent i knows what time it is: at all points that i
considers possible at the point (r,m), the time (on the sys-
tem’s shared clock) is m .

The time is encoded in each agent’s local state.

In particular, this means that i can distinguish points in
the present from points in the future; i has a different
local state at every point (r,m) in a run r .

Knowledge in Multi-Agent Systems
IVc

22

Examples. (a) the systems R1 and R2 corresponding to
the games G1 and G2 and are indeed synchronous .

(b) Intuitively, the muddy children puzzle should be model-
ed as a synchronous system. (We shall show it later).

(c) On the other hand, the system Ikb that we used to model
the Knowledge base is not synchronous. Synchrony was not
a major issue in that case.

We could make it synchronous, either by adding a clock to the Knowledge base’s
and Teller’s local states, or assumng that the Teller tells the Knowledge base a
new formula at every step. In the latter case the number of formulas in the Know-
ledge base’s and Teller’s local states encodes the time.

We could make it synchronous, either by adding a clock to the Knowledge base’s
and Teller’s local states, or assumng that the Teller tells the Knowledge base a
new formula at every step. In the latter case the number of formulas in the Know-
ledge base’s and Teller’s local states encodes the time.

Knowledge in Multi-Agent Systems
IVc

23

Perfect Recall

According to our definition of knowledge in a system, an
agent’s knowledge is determined by his local state.

Our definition admits the following two possibilities:

(i) an agent’s local state may “grow” to reflect the new know-
ledge she acquires, while still keeping track of all the old
information she had. Our definition does not requires this.

(ii) On the other side are models where it is possible that the
agent’s i information encoded in her local state ri (m) at time
m in run r no longer appears in ri (m + 1).

Knowledge in Multi-Agent Systems
IVc

24

There are often scenarios of interest where we want to model
the fact that certain information is discarded.

In practice, an agent may simply not have enough memory
to remember everything she had learned.

On the other hand, there are many instances where it is natural
to model agents as if they do not forget, that is, they have
perfect recall .

Perfect recall is sufficiently common in applications to
warrant a definition and to be studied as a separate property of
systems.

Knowledge in Multi-Agent Systems
IVc

25

Perfect recall means, intuitively , that an agent’s local state
encodes everything that has happened (from that agent’s
point of view) thus far in the run.

Among other things, this means that the agent’s state at
time (m + 1) contains at least as much information as his
state at time m . In other words, an agent with perfect
recall should, essentially, be able to reconstruct his com-
plete local history.

In the case of synchonous systems, since an agent’s local
state changes with every tick of external clock, this would
imply that the sequence <ri (0), ... , ri (m)> must be encoded
in ri (m + 1).

Knowledge in Multi-Agent Systems
IVc

26

In systems that are not synchronous, agents are not neces-
sarily afected by the passage of time on the external clock.
Thus, an agent can sense that something happened only
when there is a change in her local state. This motivates the
following definitions.

Definition. (Perfect recall)

(i) Let agent i’s local state sequence at the point (r,m) be
the sequence of local states she has gone through in run r
up to time m , without consecutive repetitions.

(ii) We say that agent i has perfect recall in system R if
at all points (r,m) and (r’,m’) in R , if (r,m) ~i (r’,m’),
then agent i has the same local state sequence at both (r,m)
and (r’,m’).

Knowledge in Multi-Agent Systems
IVc

27

(iii) We say that a system R has perfect recall, if for
every agent i , ri (m) encodes i’s local state sequence in
that, at all points where i’s local state is ri (m) , she has
the same local state sequence.

Example. Assume that from time 0 through time 4 in
run r agent i has gone through the sequence

<si , si , s’i , si , si >
of local states, where si and s’i are different .

We model this by her local state sequence
<si , s’i , si >

at (r, 4).

Knowledge in Multi-Agent Systems
IVc

28

Thus, proces i’s local state sequence at a point (r,m)
describes what has happened in the run up to time m ,
from i’s point of view.

According to the definition, agent i has perfect recall if
she “remembers” her local state sequence at all times.

Note that the systems R1 and R2 corresponding to
the games G1 and G2 assume perfect recall, since
the players keep track of all the moves that they make.

Our representation Ikb of knowledge bases assumes
perfect recall as well.

Knowledge in Multi-Agent Systems
IVc

29

In fact, perfect recall is a standard assumption made by
game theorists.

As we shall see, perfect recall is an assumption made,
either explicitely or implicitely, in a number of contexts.

Time and ignorance in perfect recall systems

One might expect that in systems where agents have perfect
recall, once an agent knows a fact A at a point (r,m) she
will know it at all points in the future. That is, we might
expect that

Ki A ->�Ki A

But this need not be true about some specific statements
talking about time.

Knowledge in Multi-Agent Systems
IVc

30

One problem arises with statement talking about the situ-
ation “now”, such as the statement A saying “it is cur-
rently time 0”. At time 0 , an agent i may know A (say,
if she has access to a clock) but agent i will certainly not
always know that it is time 0.

Another problem comes from knowledge about ignorance.
Consider the formula ¬ Ki p saying “the agent i does not
know the fact p” . Then it is not hard to construct a system
where agents have perfect recall such that agent 1 initially
does not know p , but she later learns p .

Thus, we have ¬ K1 p , and so K1 ¬ K1 p at time 0 , but by
assumption, K1 ¬ K1 p does not hold at all times in the future.

Knowledge in Multi-Agent Systems
IVc

31

Hence, certain temporal statements and knowledge about
the ignorance does not persist in the presence of perfect
recall.
Nevertheless, the intuition that in the presence of perfect
recall, once the agent knows A , then she never forgets A
is essencially correct. Namely, it is true for all stable for-
mulas.

Definition. (Stable formulas)

We say that a formula A is stable with respect to the
interpreted system I, if once A is true it remains true in
future. Hence A is stable if we have I |= A -> �A .

Knowledge in Multi-Agent Systems
IVc

32

We shall remember the following positive and negative
facts.
Proposition 1.
Suppose that A and B are stable, then

(i) (A & B) and (A v B) are stable.

(ii) If I is a system with perfect recall , then Ki A and
CG A are stable. Thus, in a system with perfect recall, if an
agent knows a stable formula at some point, then she
knows it from then on. And similarly for common
knowledge.

(iii) If in addition the system is synchronous, then DG A is
stable, as well.

Knowledge in Multi-Agent Systems
IVc

33

Proposition 2.

(i) The formula Ki A need not be stable if A is not
stable even if assuming perfect recall and synchrony.

(ii) There is an interpreted system where agents have
perfect recall and a stable fomula A such that DG A is
not stable. (Thus synchrony is necessary in the statement
(iii) of Proposition 1.)

While the proof of Proposition 1 is not complicated, the
proof of Proposition 2 is more demanding. We shall not
give the proofs here.

Knowledge in Multi-Agent Systems
IVc

34

How reasonable is the assumption of perfect recall ? This
depends on the application and on the model we choose.

It is easy to see that perfect recall requires every agent to
have a number of local states at least as large as the num-
ber of distinct local state sequences she can have in the
system .

• This fact is acceptable in systems where agents change
state rather infrequently.

• On the other hand, if we consider systems where there are
frequent state changes or look at systems over long intervals
of time, then perfect recall is an unreasonable assumption.
In such situations, perfect recall may require a rather large
(possibly infinite) number of states.

Knowledge in Multi-Agent Systems
IVc

35

The simple protocol of the bit-transmition problem
(Example 1) is one in which the Sender S and the Receiv-
er R undergo very few state changes.

The states of S and R do not reflect every separate
sending or receiving a message. The states change only
when a message is received for the first time.

According to our definitions, both S and R have perfect
recall in this case, despite the fact that neither S nor R
remember how many times they have received or sent
messages.

The point is that S and R recall everything that was ever
encoded in their states.

Knowledge in Multi-Agent Systems
IVc

36

Benefits of the assumption of perfect recall. Frequently,
during the design phase of a multi-agent system, we are at a
loss what to include in the agent’s local state . The problem
is aleviated, if we simply include to the state record all
events that the agent is involved in and assume that agents
have perfect recall.

If we can gain a reasonable understanding of the system
under the assumption of perfect recall, we can then consider
to what extent forgetting can be allowed without invalidat-
ing our analysis.

Knowledge in Multi-Agent Systems
IVc

37

Message-Passing Systems
In many situations, particularly when analyzing protocols run
by processes in a distributed system, we want to focus on the
communication aspects of the systems. In what follows, we
shall call agents processes.

We introduce the notion of a message-passing system , where
the most significant actions are sending and receiving mess-
ages and internal actions of processes.

The main ingrediences of message-passing systems are

• MSG the set of messages common for all processes,

• Σi the set of initial states for each process i ,

• INTi the set of internal actions for each process i ,

Knowledge in Multi-Agent Systems
IVc

38

the names of events send (µ, j,i), receive (µ, j,i) or int (a,i) ,
where µ ε MSG and a ε INTi . We assume that these names
correspond to events as follows:

send (µ, j,i) “message µ is sent to j by i”,
receive (µ, j,i) “message µ is received from j by i”,
int (a, i) “internal action a is performed by i ”.

As we are interested in the communication aspects of the
system, the details of the internal actions are not relevant
here.

Knowledge in Multi-Agent Systems
IVc

39

We shall denote it by the set
{send (µ, j,i), receive (η, k,i), int (a, i)} (1)

In a run r at a point r(m) a process i may perform se-
veral actions.

For example, process i performs the actions of sending
the message µ to process j , receives the message η
from process k and also performs some internal action a .

Now we can define the concept of history of a process from
the start to the point (r,m) .

Knowledge in Multi-Agent Systems
IVc

40

History of the process i is a sequence of sets such as (1).

At the point (r,0) , process i ’s history is a sequence con-
sisting from the singleton set containing only i’s initial state.

If process i performs some actions at the point (r,m) , for
example, those in the set (1), then the i ‘s history at the
point (r,m) is the result of appending the set (1) , hence

{send (µ, j,i), receive (η, k,i), int (a, i)}
to the i ‘s history at (r,m - 1).

If i performs no action in the round m , then its history at
(r,m) is the same as its history at (r,m - 1) .

Definition. (History)

Knowledge in Multi-Agent Systems
IVc

41

Note that we are distinguishing performing no action from
performing some kind of null action to indicate that time
passed. A null action would be modeled as an internal
action.

By abuse of terminology, in message-passing systems,
we speak of names

send (µ, j,i), receive (η, k,i) and int (a, i)
as events.

Definition. (Occurence of an event)

We say that an event occurs in round (m + 1) of
run r if it appeares in some process’s history in
(r,m +1) , but not in any process’s history in (r,m).

Knowledge in Multi-Agent Systems
IVc

42

Aumann structures.Aumann structures.

In message-passing systems, the process’s local states at any
point is its history. To define the concept of message passing
system, we need to impose some consistency conditions on
global states.

Definition. (Message-passing systems (m.p.s))

Given sets Σi of initial states and INTi of internal actions
for processes 1, ... , n , and a set MSG of messages common
to all processes, we define a message-passing system (over Σi
INTi and MSG) to be a system such that for each point (r,m) ,
the following constraints are satisfied.

MP1. ri(m) is a history over Σi , INTi and MSG,

Knowledge in Multi-Agent Systems
IVc

43

MP2. for every event receive (µ, j,i) in run r there exist a
corresponding event send (µ, i, j) in rj(m) , and

MP3. rj(0) is a sequence with only one member: singleton
set containig the process’s i initial state and
rj(m+1) is either identical to rj(m) or the result of
appending a set of events to rj(m).

We have ignored the environment’s state since it is defined in
a different way and its details are not relevant to the con-
straints MP1 to MP3.
The local state of environment become more important when
considering protocols.

Knowledge in Multi-Agent Systems
IVc

44

Assuming MP1 to MP3, we ensure that processes have
perfect recall since local state of each process is its history.

In practice, we may want to add further requirements:

(i) reliability

(ii) keeping the order of messages

(iii) synchrony

(iv) avoiding sleeping processes

(v) limited time for message delivery

Knowledge in Multi-Agent Systems
IVc

45

• reliability makes communication guaranteed : every
message sent is eventually received. We can express it by
the following constraint.
MP4 for all processes i , j , and all points (r,m) , if
send (µ, j,i) is in ri(m) , then there exists m’ > m such
that receive (µ, i, j) is in rj(m’) ,

• keeping order guarantees that messages arrive in the
order in which they are sent,

• synchrony forces ri(m) ri(m +1) for all i , i can then
compute the time from its history.

• avoiding sleeping forces each process to take some
action once every k rounds.

≠

Knowledge in Multi-Agent Systems
IVc

46

• limited time delivery requires that messages arrive in k
rounds.

Fortunately, the model can capture a wide range of as-
sumptions quite easily.

Asynchronous message-passing systems (a.m.p.s)

Possible reasons of asynchrony

• little or no information about time (no global clock),

• a process may suddenly slow down relative to other
processes,

• no upper bound on message delivery.

Knowledge in Multi-Agent Systems
IVc

47

We consider asynchronous systems, where we assume that

• processes may work at arbitrary rates relative to each
other,

• there is no bound on message delivery times.

We proceed much as in the previous section. As before, we
assume that each process’s local state consists of its
history.

We use to some extent the local states of the environment.
As in the case of bit-transmition problem, the environ-
ment’s local state records the events that have taken place
so far and the order in which they occured.

Knowledge in Multi-Agent Systems
IVc

48

We make the following simplifying assumptions:

(i) in each round, at most one event takes place for each
process,
(ii) for each process, all the events in its history are distinct.

It follows from (i) that now a history is a sequence start-
ing with an initial state followed by singleton sets {e}
consisting of the only event that took place. It is natural to
replace the singleton by the event e itself.

The assumption (i) is reasonable if we model time at a
sufficiently fine level of granularity.

Knowledge in Multi-Agent Systems
IVc

49

The assumption (ii) makes the exposition much easier if we
do not have to distinguish different occurences of the same
event in a given run. It helps if we want to consider occur-
ences of events and their temporal relationships.

In particular, (ii) forces each process never to perform the
same action twice in a given run.

(We can dispose with this constraint if we simply change
our representation of events in the history replacing the
event e by the ordered pair <k,e>, where k indicates that
it is kth occurence of event e in the given run.)

Knowledge in Multi-Agent Systems
IVc

50

Preliminary knowledge and its elimination.
In any message passing system, a process knows at least
what is in its history. It may well know more, in particular if
it has some a priory knowledge. For example, in a system
where it is common knowledge that all processes perform
an action at every round, a process can certainly deduce in-
formation made by other processes from amount of progress
it has made itself.

To eliminate all such additional knowledge, we consider
possible all runs consistent with the assumption MP1 to
MP3.

To make it precise, we use the following definition.

Knowledge in Multi-Agent Systems
IVc

51

Definition. (Prefixes and prefix-closed sets of histories)

Recall that in message-passing systems (synchronous or
asynchronous) the local state of a process i in the point
(r,m) is its history, hence a sequence of sets consisting of
events that took place in the corresponding step.

(i) We call a prefix of a history h any non-empty init-
ial sequence of h.

(ii) We say that a set V of histories is prefix-closed if
whenever h is a history in V , then every prefix of h
is also in V.

Knowledge in Multi-Agent Systems
IVc

52

Definition. (Asynchronous message-passing system)

Let V1 , ... , Vn be prefix-closed sets of histories for proces-
ses 1 , ... , n respectively.

Let R(V1 , ... , Vn) be the set of all runs satisfying MP1,
MP2, and MP3 such that all of process i ’s local states are
in Vi .

We define an asynchronous message-passing system (a.m.p.
system for short) to be one of the form R(V1 , ... , Vn) for
some choice of V1 , ... , Vn .

We shall see that this definition requires that with each run r
the system contains many other runs that can be constructed
from r .

Knowledge in Multi-Agent Systems
IVc

53

Remark. Why there are no reliable a.m.p. systems.
It seems that we could add MP4 to the definition of asyn-
chronous system in order to guarantee reliability. The
following example shows that an a.m.p. system in which
communication takes place can never be reliable.

Example 1. Suppose that R(V1 , ... , Vn) is an a.m.p. system
that includes a run r such that i sends j the message µ
in round m of r . It can be shown that then the system must
contain another run r’ that agrees with r up to the begin-
ning of round m , process i still sends µ to j in round m
of r’, but j never receives µ .

It folows that if at least one message was sent, the a.m.p.
system cannot be reliable.

Knowledge in Multi-Agent Systems
IVc

54

The following example illustrates the fact that in a.m.p sy-
stems every run r induces a number of other runs related
to r .

Example 2. Suppose r ε R and r* is the run in which all
events in r are “stretched out by factor of two. Thus, in r* ,
all processes start in the same initial state as in r , no events
occur in odd rounds of r*, and, for all m , the same events
occur in round 2m of run r* as in round m of run r .
Hence for all times m, we have r*(2m) = r*(2m +1) = r(m).

It is easy to check that r* satisfies conditions MP1-3 (since
r does) so r* must also be in R.

Similarly, any run that is like r except that there are arbitra-

Knowledge in Multi-Agent Systems
IVc

55

ry long “silent intervals” between the events of r is
also in R .

This shows that in a precise sense time is meaningless in
a.m.p. systems.

To make possible a closer analysis of events, we define
a notion of potential causality between events. This is
intended to capture the intuition that event e might ha-
ve caused event e’. In particular, we mean by this that
e necessarily occured no later than e’.

Knowledge in Multi-Agent Systems
IVc

56

Definition. Potential causality.

(i) For events e and e’ in a run r , we write e -r-> e’ if
either e’ is a receive event and e is the corresponding
send event, or
for some process i , events e, e’ are both in i ‘s history
at some point (r,m) and either e = e’ or e comes earlier
in the history.

(ii) we shall use the same symbol for the transitive clos-
ure of the above defined relation.
Note that -r-> is an anti-symmetric relation, we cannot
have e -r-> e’ and e’ -r-> e unless e = e’. However,
this would not be the case if we allowed an event occur

Knowledge in Multi-Agent Systems
IVc

57

more than once in a history. The following result makes
precise the degree to which an a.m.p.s. is asynchronous.

It says that the potential causality relation -r-> is the
closest we can come in a.m.p. system to define a notion
of ordering of events. Even if processes combine all
their knowledge, they could not deduce any more about
the ordering of events in run r than is implied by -r-> .

Notation. We assume that for each pair of events e , e’,
Prec(e,e’) is a primitive proposition in Φ. We say that
the interpretation of these propositions in the interpreted
a.m.p. system I = (R, π) is standard if

Knowledge in Multi-Agent Systems
IVc

58

π(r(m))(Prec(e,e’)) = true

exactly if e , e’occur by round m of r , and e occurs no later
than e’ in r. The definition of π is correct, since we assum-
ed that the environment keeps track of the events that have
occured.

Proposition 1. Let G be the group of all processes, R be an
a.m.p. system and assume that the interpretation of Prec(e,e’)
in I = (R, π) is standard. Then

(I, r, m) |= DG (Prec(e,e’)) iff e, e’both occurred by round m
and e -r-> e’.

Knowledge in Multi-Agent Systems
IVc

59

Knowledge Gain in A.M.P. Systems

There are even closer connections between the potential
causality ordering and knowledge. As we shall see, the
relationship between knowledge and communication is
mediated by the causality relationship -r-> .

Roughly speaking, the only way for process i to gain
knowledge about process j is to receive a message.
Although this message does not have to come directly from
process j , it should be the last in a chain of messages, the
first of which was sent by j.

Knowledge in Multi-Agent Systems
IVc

60

Definition. Process chains

Suppose that i1 , ... , ik is a sequence of processes, with
repetitions allowed, r is a run and m < m’.

(i) We say that <i1 , ... , ik> is a process chain in (r, m..m’)
if there exist events e1 , ... , ek in run r such that event e1
occurrs at or after the round m + 1 in run r , event ek oc-
currs at or before round m’, event ej is in process ij‘s
history for j = 1, 2, ... , k , and e1 -r-> e2 ... -r-> ek .

(ii) We say that <i1 , ... , ik > is a process chain in r if it is
a process chain in (r,m..m’) for some m < m’.

Knowledge in Multi-Agent Systems
IVc

61

Example 1. Suppose that in run r , process 1 sends the
message µ to process 2 in round 1, process 2 receives µ
in round 2, process 2 sends the meassage µ’ to process 1
in round 3, and µ’ is received by process 1 in round 3 .

Then <1,2,2,1> is a process chain in (r,0..3) (as is (1,2,1)).

This example suggests that process chains are intimately
linked to the sending and receiving of messages. It is easy
to see that <1,2,1> is a process chain in run r corres-
ponding to events e1, e2 , e3 that occur in rounds
m1, m2, and m3 , respectively then there must have been a
message sent by process 1 between rounds m1 and m2
inclusive (i.e. at or after m1, and at or before round m2)

Knowledge in Multi-Agent Systems
IVc

62

to process 2 and a message sent by process 2 between
rounds m2 and m3 inclusive. More generally, we have
the following lemma

Lemma 1. Suppose that <i1 , ... , ik> is a process chain in
(r, m...m’), with ij ij+1 , for 1 < j < k - 1. Then there
must be a sequence of messages µ1, ... , µk-1 sent in r
such that µ1, is sent by i1, at or after round m + 1, and
µj, is sent by ij strictly after µj-1 is sent by i1-1 for
1 < j < k-1.

In particular, at least k-1 messages must be sent in run r
between rounds m + 1 and m’ inclusive.

≠

Knowledge in Multi-Agent Systems
IVc

63

Note that it is not necessarily the case that µj is sent by
ij, to i1+1, there may be a finite sequence of messages in
between. The next definition is the key to relating
knowledge and communication.

Definition. If i1 , ... , ik is a sequence of processes, we
write (r,m) ~ i1 , ... , ik (r’,m’) , and say that (r’,m’) is
(i1 , ... , ik)-reachable from (r,m), if there exist points
(r0,m0), ... , (rk , mk) such that (r,m) = (r0,m0),
(r’,m’) = (rk , mk) and (rj-1 , mj-1) ~ j (rj , mj) for
i = 1, ... , k.

Knowledge in Multi-Agent Systems
IVc

64

Thus, (r’,m’) is (i1 , ... , ik)-reachable from (r,m) if at the
point (r,m) process i1 considers it possible that i2
considers it possible ... that ik considers it posible that
(r’, m’) is the current point.

Despite the notation, the relation of (i1 , ... , ik)-reachability
is not in general an equivalence relation if k > 1.

Lemma 2. Let R be an a.m.p. system, let r be a run in R,
and let m < m’. For all k > 1 and all sequences i1 , ... , ik
of processes, either (r,m) ~i1, ... ,ik (r,m’) or <i1 , ... , ik > is
a process chain in (r, m..m’).

Knowledge in Multi-Agent Systems
IVc

65

Proof. We proceed by induction on k. If k = 1 and < i1>
is not a process chain in (r, m..m’), then it must be the
case that no events occur in process i1’s history in r be-
tween rounds m + 1 and m’ inclusive. It follows
(r,m) ~i1 (r,m’), as desired.

Suppose k >1 and < i1 , ... , ik> is not a process chain in
(r, m..m’). Let e* be the last event in k’s history at the
point (r,m’). We now define a new run r’. Intuitively, r’
consists of all the events that occurred in r up to and
including round m, together with all the events that
occurred in r after round m that potentially caused e*.

The run r’ agrees with r up to time m (so that we have

Knowledge in Multi-Agent Systems
IVc

66

r’(m”) = r(m”) for 0 < m”< m). For m < m” < m’ and
each process i , we define ri‘(m”) to be the sequence
that results from appending to ri‘(m) (in the order) all
events e in ri(m”) that occurred between rounds m+1
and m” inclusive such that e -r-> e*.

Finally, we take r’(m”) = r(m’) for m” > m’ , i.e. no
event takes place after time m’.

It is easy to check that ri’(m”) is a prefix (not neces-
sarily strict) of ri(m”) for all m” > 0 , because if e’
occurs in ri(m”) before e and e -r-> e* then we also
have e’ -r-> e*.

Knowledge in Multi-Agent Systems
IVc

67

It is now not hard to show that

(1) r’ ε R i.e. to check that r’ satisfies MP1-3,
(2) (r’, m’) ~ik (r,m’) ,
(3) (r,m) ~i1 (r’, m) , and
(4) <i1 , ... , ik-1 > is not a process chain in (r’, m..m’).

It follows from (4) and the induction hypothesis that
(r’, m) ~i1, ... ,ik-1 (r’, m’)

Applying (2) and (3) we immediately get
(r,m) ~i1, ... ,ik (r,m’)

as desired.

The two conditions in Lemma 2 are not mutually exclusive.

Knowledge in Multi-Agent Systems
IVc

68

It is possible to construct a run r such that, for example,
<1,2> is a process chain in (r, 0 .. 4) and (r,0) ~1,2 (r,4).

Theorem 1.
Let r be a run in an interpreted a.m.p. system I , and assu-
me that m < m’.
(a) If (I, r, m) |= ¬ Kik A and (I, r, m’) |= Ki1 ... Kik A , then
<i1 , ... , ik > is a process chain in (r, m..m’).

(b) If (I, r, m) |= Ki1 ... Kik A and (I, r, m’) |= ¬ Kik A , then
<i1 , ... , ik > is a process chain in (r, m..m’).

The theorem essentially says that processes can gain or loose

Knowledge in Multi-Agent Systems
IVc

69

knowledge only by sending and receiving messages.

Proof. We prove (b) by contradiction, the proof of (a) is
similar. Suppose that <i1 , ... , ik > is not a process chain
in (r, m..m’). By lemma 2, we have (r,m) ~i1, ... ,ik (r,m’).

Thus, by definition, there are points (r0,m0), ... , (rk ,mk)
such that (r,m) = (r0,m0), (r,m’) = (rk ,mk) and for
j = 1, ... , k we have (rj-1, mj-1) ~j (rj , mj).

We can now show by induction on j , that for j = 1,..., k
(I, rj , mj) |= Kij ... Kik A . In particular, it follows that
(I, r, m’) |= Kik A , a contradiction.

Knowledge in Multi-Agent Systems
IVc

70

Part (a) of Theorem 1 seems quite intuitive: knowledge
gain can occur only as a result of receiving messages.
Part (b) may seem somewhat counterintuitive:
knowledge loss can occur only as the result of sending
messages.

Example 2. Suppose that process 1 sends process 2 a mess-
age “Hi”, and that this is the first message sent from pro-

Individual processes typically can lose
(1) “positive” knowledge, and
(2) knowledge of their ignorance.
We give a rough image how it can happen in the fol-
lowing example.

Knowledge in Multi-Agent Systems
IVc

71

More deeply nested “positive” knowledge can be lost as
well. This needs but a more complicated example. It can
be illustrated by a number of locks put by different pro-
esses on a database.

cess 1 to process 2. Before process 1 sends the mess-
age, 1 knows that 2 has not received any message from
it. After it sends the messages, it loses this knowledge.

Losing knowledge of ignorance can be illustrated by the
formula p saying “the value of variable x is 0”, where x
is a variable local to process 3. Suppose that (I, r, 0) |= ¬ p .
Clearly ¬K1 p since process 1 cannot know a false fact.

Knowledge in Multi-Agent Systems
IVc

72

By a lenghty computation using introspection axioms
and some assumptions on the run r it is possible to
show that at a later point K2K1 p and consequently K1 p
holds.

On the other hand, the following theorem shows that
common knowledge can neither be gained nor lost in
a.m.p. systems.

Theorem 2.

Suppose I is an interpreted a.m.p. system, r is a run in I ,
and G is a group of processes with |G| > 2. Then for all
fromulas A and all times m > 0, we have

(I, r, m) |=CG A iff (I, r, 0) |=CG A

Knowledge in Multi-Agent Systems
IVc

73

Proof by contradiction. Suppose
(I, r, m) |= CG A and (I, r, 0) |= ¬ CG A

Suppose that exactly l messages are sent between
rounds 1 and m inclusive. Since (I, r, 0) |= ¬ CG A
there must be some sequence i1 , ... , ik of pairwise
distinct processes in G such that
(I, r, 0) |= ¬ Kik ... Ki1 A . Let i, j be distinct processes
in G and j be distinct from ik .
Since (I, r, m) |= CG A ,
it follows that (I, r, m) |= (KiKj)l Kik ... Ki1 A
by (a) of theorem 1, where the role of A is played by
Kik-1 ... Ki1 A , it follows that <ik , j, i, ... , j, i> is a
process chain in (r, 0..m), where there are l occurr-
ences of j, i in this chain. By Lemma 1, at least 2l

Knowledge in Multi-Agent Systems
IVc

74

messages must be sent in round r between rounds 1
and m . But this contradicts our assumption that exactly
l messages are sent. Thus common knowledge cannot
be gained.

The proof that common knowledge cannot be lost pro-
ceeds along identical lines, using part (b) of Theorem 1 .

Remark. It can be shown that Theorem 1 and Theorem 2
can be proved with almost no change in the proofs for re-
liable systems. This shows that reliability does not play
an important role in these results. It is the fact that there
is no bound on message delivery that is crucial here.

Knowledge in Multi-Agent Systems
IVc

75

Theorem 1 and lemma 1 can prove a number of lower
bounds on number of messages required to solve certain
problems.

Example 3. (Mutual exclusion) Intuitively, it means that
there is a shared resource but only one process may ac-
ces the resource at a time.

We say that a.m.p. system R is a system with mutual
exclusion if in every run of R , no two processes have
simultaneously access to the resource.

It can be shown that for a system R with mutual exclus-
ion and a run r in R in which processes i1 , ... , ik in

Knowledge in Multi-Agent Systems
IVc

76

sequence have access to the shared resource. If we assume
that for every j , 1 < j < k the proccesses ij and ij+1 are
different, then < i1 , ... , ik> is a process chain in r .

By lemma 1 this implies that at least k-1 messages are
sent in r . This gives us a lower bound on the number of
messages required for mutual exclusion: for k processes
to acquire access to a shared resource, at least k-1 mess-
ages should be sent.

