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We have introduced interpreted systems I = (R, π) and its 
semantics (I, r, m) |=  A   for all formulas, where  R is a 
set of runs and   π is a function on global states which gives 
the truth of primitive propositions at a point  (r,m). Thus, the 
truth of a primitive proposition   q at a point  (r,m) depends 
only on the global state   r(m) .

This seems like a natural assumption. Quite often, in fact, the 
truth of a primitive proposition   q of interest does not 
depend on the whole global state, but only on the component 
of some particular agent. 
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For example, the truth of a statement   “process  2   received 
from process 1 a message” might depend only on process  
2’ state. In that case, we expect   π to respect the locality  
of  q ,  i. e. if  s, s’ ε G  and s ~i s’ , then  π(s)(q) = π(s)(q). 

We can also imagine statements that depend on more tha n just one global state. 
Consider, for example, a statement  “at some later point in the run the variable  x
is set to  5”.  There could be two points  (r, m) and (r’, m’)  with the same global 
state, such that this statement is true at  (r, m)  and false at  (r’, m’).

We can also imagine statements that depend on more tha n just one global state. 
Consider, for example, a statement  “at some later point in the run the variable  x
is set to  5”.  There could be two points  (r, m) and (r’, m’)  with the same global 
state, such that this statement is true at  (r, m)  and false at  (r’, m’).

Thus, such a temporal cannot be represented by any formula in our language. This 
is a consequence of the following proposition.

Thus, such a temporal cannot be represented by any formula in our language. This 
is a consequence of the following proposition.
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Proposition. For every formula  A ε Ln
CD , if   r(m) = r’(m’), 

then          (I, r, m) |= A  iff (I, r’, m’) |= A.                     (1)

Proof. We proceed by the complexity of the formula  A . 

• If  A  is  a primitive proposition  q , (r, m)  and  (r’, m’ )  are equal 
global states then we have  (I, r, m) |=  q    iff (I, r’, m’) |=  q  since   
π(r, m)(q) =  π(r’, m’)(q)

• If  A is a formula   ¬B , from the induction hypothesis we have             
(I, r, m) |=  B   iff (I, r’, m’) |=  B   and  hence   A is not true either in    
(I, r, m)  nor in  (I, r’, m’) . Hence  (1)  holds.

• We proceed similarly if   A is the formula   B & C .
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• If   A is a formula   KiB then   r(m) = r’(m’)  implies that every state       
s ε G    connected with   r(m)   by an edge in   Ki is connected  with  
r’(m’)   by the same edge. Thus , if   (I, s) |=  B   for every such   s , we 
have the same for every  s connected  with  r’(m’).                           
Thus,  (I, r, m) |= KiB iff (I, r’, m’) |= KiB and  (1) holds for every  i. 

• To get (1)  for   C B and   D B we  proceed by induction on  En .

While we could deal with this problem by allowing the truth of primitive proposition to 
depend on the point, and not just the global state, the more appropriate way to ex-
press such temporal statements is to add modal operators for time into the language.

While we could deal with this problem by allowing the truth of primitive proposition to 
depend on the point, and not just the global state, the more appropriate way to ex-
press such temporal statements is to add modal operators for time into the language.
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Definition.  (Validity of formulas in interpreted systems)
(i) We say that a formula A is valid in the interpreted 
sytem I = (R, π) , if   (I, r, m) |=  A for all points   (r, m)  
in  I.

(ii) For a class  C of interpreted systems, we say that a 
formula   A  is valid in  C , and write   C |=   A if   A is 
valid in every interpreted system   I ε C .

We now have a concrete interpretation for knowledge in multi-agent systems. 
As we already have said, this interpretation of knowledge is an external  one, 
ascribed to the agents by someone reasoning about the system. We do not 
assume that the agents compute their knowledge in any way, or that they can 
answer questions based on their knowledge.  

We now have a concrete interpretation for knowledge in multi-agent systems. 
As we already have said, this interpretation of knowledge is an external  one, 
ascribed to the agents by someone reasoning about the system. We do not 
assume that the agents compute their knowledge in any way, or that they can 
answer questions based on their knowledge.  
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Note that this notion of knowledge satisfies all the axioms of S5, since  ~i is an equi-
valence relation. We have seen already that the Distribution (Kripke) Axion and the 
Generalization Rule  both hold. We have seen that these propertie hold in every 
Kripke structure no matter how we define the  Ki relation in  MI  As a consequence, 
agents know all logical consequences of their knowledge and they know all valid 
formulas.

Note that this notion of knowledge satisfies all the axioms of S5, since  ~i is an equi-
valence relation. We have seen already that the Distribution (Kripke) Axion and the 
Generalization Rule  both hold. We have seen that these propertie hold in every 
Kripke structure no matter how we define the  Ki relation in  MI  As a consequence, 
agents know all logical consequences of their knowledge and they know all valid 
formulas.

Recall that we allow the agents in our system to be processed in
a distributive system. It may be strange to view such inanimate 
agents as possessing knowledge and, in fact as being  “logically 
omniscient”.

Nevertheless, the above definition  of knowledge is consistent with at least one way it 
is used in practice. For example, when someone analyzing a distributed protocol says 
“process 2 does not know that process 3 is faulty at the end of round 5 in run  r “. This 
mean s that there is a point at which process 3 is faulty, which is indistinguishable to 
process 2 from the point  (r, 5).  

Nevertheless, the above definition  of knowledge is consistent with at least one way it 
is used in practice. For example, when someone analyzing a distributed protocol says 
“process 2 does not know that process 3 is faulty at the end of round 5 in run  r “. This 
mean s that there is a point at which process 3 is faulty, which is indistinguishable to 
process 2 from the point  (r, 5).  
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There are certain applications, however, for which the exter-
nally ascribed knowledge is inappropriate. We shall consider 
an example involving knowledge bases , where it may be 
more appropriate to consider bases’s knowledge as beliefs.

The difference consists in the fact that the agent can believe some facts that are 
not true. Hence the Axiom of Truth does not hold for beliefs.

The difference consists in the fact that the agent can believe some facts that are 
not true. Hence the Axiom of Truth does not hold for beliefs.

It can be shown that by using a slightly different  Ki  relat-
ions instead of  ~i , we do get a reasonable notion of belief.

Of course, we still have the problem of logical omniscience.

To start with somethig now, we will still use the external 
notion of knowledge to analyze multi-agent systems.
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Example 2. (The bit transmission problem analyzed in informed systems)

Consider the bit-transmission problem again. Now we take  Φ to 
consist of six primitive propositions:

bit = 0, bit = 1, recbit,  recack, sendbit and sendack , represent-
ing two assertions about  S’s  initial value of bit, assertions say-
ing that  R has received  S’s message,  S  received  R’s acknow-
ledgment,  S  has just sent a message, and  R has just send a mes-
sage, respectively. 

The appropriate interpreted system is  Ibt  = (Rbt, πbt) where Rbt , 
consists of the set of runs from Eample 1, and  πbt is such that

• (Rbt,  r, m)  |= bit = k  if  rS(m) is either  k or (k, ack), i = 1, 2
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• (Rbt, r, m ) |=  recbit if   rR(m)  is not   λ ,

• (Rbt, r, m)  |= recack if   rS(m) = (0, ack)  or  rS(m) = (1, ack),

• (Rbt, r, m) |= senbit   if  the last tuple in  re(m) is either  
(sendbit, Λ)  or  (sendbit , sendack), and 

• (Rbt, r, m)  |=  sendack   if the last tuple in   re(m)  is either   
(Λ, sendack)   or  (sendbit , sendack) .

Note that the truth valueof all these primitive propositions is completely determined 
by the global state, since we assumed the environment’s state records the events 
taking place in the system.

In fact it is easy to see that  bit = 0, bit = 1, and  recack  are local to  S  and  that  
recack is local to  R .

For the reminder of our dicussion in this example, we need only the primitive 
propositions  bit = 0 and bit = 1 , the other primitive proposition will be useful later.

Note that the truth valueof all these primitive propositions is completely determined 
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Just as the way we choose the model the local states in the 
system depend on the analysis we plan to carry out, the same 
applies to the choice of primitive propositions.

Intuitively, after  R receives the  S’s  bit, then  R  knows the 
value of the bit. Indeed it is easy to  check that if  (r, m) is a 
point such that  rR(m) = k  and   k is not  λ , i.e.  R received  
S’s bit by that point, then  (I, r, m) |= KR(bit = k) . This is 
because at all other points  (r’, m’) , if   (r, m) = (r’, m’), then 
S must have initial bit  k at  (r’, m’) .

Similarly, when  S receives  R’s  ack  message, then   S
knows that  R knows the initial  bit. More formally, if      
rS(m) = (k, ack), then  (I, r, m) |=  KS KR(bit = k). 
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It is easy to see, in this setting, if  S stops sending 
messages to  R before  S  knows that  R  knows the value 
of the bit                                                      
i.e. before either  KS KR(bit = 0)  or  KS KR(bit = 1)  holds, 
then is is possible that  R will never receive the bit. 

Although we do not provide a formal proof of thei fact here, this observation 
already suggests the power of the knowledge-based approach. It allows us to 
relate actions, such as sending a message or receiving a message, to state of 
knowledge, and then use the states of knowledge as a guide to what actions 
should follow. We shall investigate these issues in greater detail later

Although we do not provide a formal proof of thei fact here, this observation 
already suggests the power of the knowledge-based approach. It allows us to 
relate actions, such as sending a message or receiving a message, to state of 
knowledge, and then use the states of knowledge as a guide to what actions 
should follow. We shall investigate these issues in greater detail later
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Incorporating Time

Motivation.
Example 1 has shown that our language is not expressive enough to 
handle conveniently the full complexity of even simle situations. For 
example, we might want to make state-ments like “the receiver event-
ually knows the sender’s initial bit”. We have already observed that we 
cannot express such temporal statements in our language.

To be able to make temporal statements, we extend our lang-
uage by adding temporal operators, which are new modal 
operators for talking about time. From the variety of such 
operators, we focus here on four of them.
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The operators, we use to extend our language are

• � (“always”), its dual,

• <> (“eventually”),

• O   (“next time”) and

• U (“until”)

Intuitively,  �A is true if   A is true now and at all later points;   <>A  is true if   A
is true at some point in the future;  OA is true if   A  is true at the next step; and  
A U B  is true if   A is true until  B is true.

Intuitively,  �A is true if   A is true now and at all later points;   <>A  is true if   A
is true at some point in the future;  OA is true if   A  is true at the next step; and  
A U B  is true if   A is true until  B is true.

More formally, in interpretated systems, we have

(I, r, m) |= �A    iff   (I, r, m’) |= A for all  m’ > m,

(I, r, m) |= <>A iff   (I, r, m’) |= A  for some  m’ > m ,



Knowledge in Multi-Agent Systems 
IVa

15

(I, r, m) |= A iff   (I, r, m+1) |= A, and

(I, r, m) |= A U B   iff   (I, r, m’) |= B for some  m’ > m  and          
.                                     (I, r, m”) |= A for all m”, m < m”< m’

Note that our interpretation of   OA as  “A holds at the next step” makes sense in 
discrete time (which is our case). All the other temporal operators make perfect 
sense even for continuous time.

Note that our interpretation of   OA as  “A holds at the next step” makes sense in 
discrete time (which is our case). All the other temporal operators make perfect 
sense even for continuous time.

It is easy to show that                                         
.                                                               �A <->  ¬<>¬A                                            . . .            
.                                                               <>A <-> ¬�¬A . 

.                                                               <>A <-> true U A                                           
Thus, we can take    O  and  U as basic operators, and define 
� and <>  in terms of    U .
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