
Knowledge in Multi-agent systems
IV

1

Runs and Systems

Knowledge in Multi-agent systems
IV

2

It is hard enough to reason about the behaviour of one agent.
Things get much worse if we have a system of interacting
agents.

Consider, for example the muddy children puzzle. If we attempt to model the
system in full detail, we would have to include all that happend to each of the
children thoughout their lives, a detailed description of their visual and auditory
systems and how they operate, details of the whether they can reason logically,
etc. etc. The list is potentially endless. All of these factors could, in principle,
influence the behaviour of the children.

Consider, for example the muddy children puzzle. If we attempt to model the
system in full detail, we would have to include all that happend to each of the
children thoughout their lives, a detailed description of their visual and auditory
systems and how they operate, details of the whether they can reason logically,
etc. etc. The list is potentially endless. All of these factors could, in principle,
influence the behaviour of the children.

Knowledge in Multi-agent systems
IV

3

first we focus attention on only a few details, and hope
that these cover everything that is relevant to our analysis.

• second we try to find good ways to think about a situation
in order to minimize the complexity.

We want to show that reasoning about systems in terms of
knowledge can be very helpful.

To do that, we need a formal model of multi-agent systems.

To cope with the complexity,

Knowledge in Multi-agent systems
IV

4

One of a key assumptions we make is that if we look at the
system at any point in time, each agent is in some state.

We refer to this as the agent‘s local state.

We assume that an agent‘s local state encapsulates all the
information to which the agent has access.

In our abstract framework, we do not make any additional
assumptions about the state.

In case of the muddy children, the state of a child might encode what the child has
seen and heard i.e. which of the other children have muddy foreheads and which do
not, the father‘s initial statement, and the responses of each of the children to the
father‘s questions so far.

In case of the muddy children, the state of a child might encode what the child has
seen and heard i.e. which of the other children have muddy foreheads and which do
not, the father‘s initial statement, and the responses of each of the children to the
father‘s questions so far.

Knowledge in Multi-agent systems
IV

5

As the example of a poker game already indicates, represen-
ting the states of the agents can be highly nontrivial.

The first problem is deciding what to include in the state.

Modelling a poker game a player‘s state might consist of the cards he currently
holds, the bets made by the other players, any other cards he has seen, and any
information he may have about the strategies of the othe player‘s. [e.g. Bob may
know that Alice likes to bluff, while Charlie tends to bet conservatively.]

Modelling a poker game a player‘s state might consist of the cards he currently
holds, the bets made by the other players, any other cards he has seen, and any
information he may have about the strategies of the othe player‘s. [e.g. Bob may
know that Alice likes to bluff, while Charlie tends to bet conservatively.]

Certainly if the system is made up of interacting people, then it becomes a rather
difficult problem to decide where to draw the line. In the poker example, should we
include the fact that Bob had an unhappy childhood as a part of the state? If so, how
do we capture this?

Certainly if the system is made up of interacting people, then it becomes a rather
difficult problem to decide where to draw the line. In the poker example, should we
include the fact that Bob had an unhappy childhood as a part of the state? If so, how
do we capture this?

Knowledge in Multi-agent systems
IV

6

Once we have solved the problem of what we include in the
state, we then have to decide how to represent what we do
include.

If we decide that Bob‘s childhood is relevant, how do we describe the relevant
features of his childhood in a reasonable way? In our abstract framework we
sidestep these difficulties, and simply assume that at each point in time , each
agent in the system is in some unique state. Of course, we are confronted with
these difficulties when dealing with concrete examples.

These problems tend to be somewhat easier to solve when dealing with processes
in a distributed system rather than with people, but as we shall see later on, even in
tnis simpler setting there can be difficult choices to make.

If we decide that Bob‘s childhood is relevant, how do we describe the relevant
features of his childhood in a reasonable way? In our abstract framework we
sidestep these difficulties, and simply assume that at each point in time , each
agent in the system is in some unique state. Of course, we are confronted with
these difficulties when dealing with concrete examples.

These problems tend to be somewhat easier to solve when dealing with processes
in a distributed system rather than with people, but as we shall see later on, even in
tnis simpler setting there can be difficult choices to make.

Knowledge in Multi-agent systems
IV

7

Once we think in terms of each agent having a state, it is but
a short step to think of the whole system as being in some
state.

If we are analyzing a message-passing system where
processes send messages back and forth along commun-
icaton lines, we might want to know about messages that
are in transit or about whether a communication line is up
or down.

The first try might be to make the system‘s state to be a tuple of the form
(s1 ,s2 , … , sn) where si , is the agent i‘ s state. But, in general, more than
just the local states of the agents may be relevant when analyzing a system.

The first try might be to make the system‘s state to be a tuple of the form
(s1 ,s2 , … , sn) where si , is the agent i‘ s state. But, in general, more than
just the local states of the agents may be relevant when analyzing a system.

If we are considering a system of sensors observing some terrain, we might
need to include features of the terrain in a description of the state of a system.

If we are considering a system of sensors observing some terrain, we might
need to include features of the terrain in a description of the state of a system.

Knowledge in Multi-agent systems
IV

8

Motivated by these observations, we conceptually divide a
system into two components: the agents and the environment,
where we view the environment as „everything else to be
relevant“.

We define a global state of a system with n agents to be an
(n + 1)-tuple of the form (se , s2 , … , sn) , where se is the state
of the environment and si is the local state of agent i .

In many ways the environment can be viewed as just another agent, though it typ-
ically plays a special role in our analyses.

In many ways the environment can be viewed as just another agent, though it typ-
ically plays a special role in our analyses.

A given system can be modeled in many ways. How we divide the system into
agents and environment depends on the system being analyzed.

In a message-passing system, we can view a message buffer, which stores
messages not yet delivered, either as a process (i.e., an agent), and have its state
encode which messages have been sent and not yet delivered, or as a part of the
environment.

A given system can be modeled in many ways. How we divide the system into
agents and environment depends on the system being analyzed.

In a message-passing system, we can view a message buffer, which stores
messages not yet delivered, either as a process (i.e., an agent), and have its state
encode which messages have been sent and not yet delivered, or as a part of the
environment.

Knowledge in Multi-agent systems
IV

9

A global state describes the system at a given point of time. But
a system is not a static entity; it constantly changes.

• Since we are mainly interested in how systes change over time,
we need to build time into our model.

• We define a run to be a function from time to global states.

Similarly, we can view a communication line as an agent whose local state might
describe (among other things) whether or not it is up, or we can have the status of the
communication lines be a part of the environment.

Similarly, we can view a communication line as an agent whose local state might
describe (among other things) whether or not it is up, or we can have the status of the
communication lines be a part of the environment.

Intuitively, a run is a complete description how the system‘s global state evolves over
time.

Intuitively, a run is a complete description how the system‘s global state evolves over
time.

Knowledge in Multi-agent systems
IV

10

We take time to range over the natural numbers. Thus r(0)
describes the initial global state of the system in a possible
execution r , the next global state being r(1) , and so on.

Although we typically think of time as being continuous,
assuming that time is discrete is quite natural. Computers
proceed in discrete time steps, after all.

Our assumption that time ranges over the natural numbers seems to be quite a
strong one. In particular it means that the steps are discrete and that time is
infinite. We have made this choice mainly for definitness, but also because it
seems appropriate for many applicationas.

Most of our results and comments hold with little or no change if we assume
instead that time is continuous (and ranges over, say, the real numbers or the
non negative real numbers).

Our assumption that time ranges over the natural numbers seems to be quite a
strong one. In particular it means that the steps are discrete and that time is
infinite. We have made this choice mainly for definitness, but also because it
seems appropriate for many applicationas.

Most of our results and comments hold with little or no change if we assume
instead that time is continuous (and ranges over, say, the real numbers or the
non negative real numbers).

Knowledge in Multi-agent systems
IV

11

We assume that time is measured on some clock external to the
system. We do not assume that agents in the system necessarily
have access to this clock; at time m measured on the external
clock, agent i need not know it is time m. If an agent does know
the time, then this information would be encoded in his local
state.

Allowing time to be infinite makes it easier to model situations where there is no a priori
time bound on how long the system will run. An example of this phenomenon is provided
by the Muddy children puzzle. It is not clear how many steps it will take the childrens to
figure out whether they have mud on their forehead; indeed, in some variants of the
puzzle, they never figure it out.

And if we do want to model a system that runs for a bounded number of steps, we can
typically capture this by assuming that the system remains in the same global state
after it has stopped.

Allowing time to be infinite makes it easier to model situations where there is no a priori
time bound on how long the system will run. An example of this phenomenon is provided
by the Muddy children puzzle. It is not clear how many steps it will take the childrens to
figure out whether they have mud on their forehead; indeed, in some variants of the
puzzle, they never figure it out.

And if we do want to model a system that runs for a bounded number of steps, we can
typically capture this by assuming that the system remains in the same global state
after it has stopped.

Knowledge in Multi-agent systems
IV

12

This external clock need not measure „real time“.

A system can have many possible runs, since the system‘s
global state can evolve in many possible ways: there are a
number of possible initial states and many things that could
happen from each initial global state.

For example, in the case of Muddy children puzzle, there could be one „tick“of the
clock for every round by the puzzle and every round of the answers to the father‘s
question.

If we are analyzing a poker game, there could be on tick of the clock in whatever
each time someone bets or discards. In general, we model the external clock in
whatever way makes it easiest for us to analyze the system.

For example, in the case of Muddy children puzzle, there could be one „tick“of the
clock for every round by the puzzle and every round of the answers to the father‘s
question.

If we are analyzing a poker game, there could be on tick of the clock in whatever
each time someone bets or discards. In general, we model the external clock in
whatever way makes it easiest for us to analyze the system.

For example, in poker game, the initial global state could describe the possible
deals of the hand, with player i‘s local state si describing the cards held initially
by player i .

For example, in poker game, the initial global state could describe the possible
deals of the hand, with player i‘s local state si describing the cards held initially
by player i .

Knowledge in Multi-agent systems
IV

13

To capture this, we formally define a system to be a
nonempty set of runs.

Instead of trying to model to describe the system directly,
our definition models the possible behaviours of the
system. By the requirement that the set of runs be nonempty
we are modelling that the system has some behaviours.

For each fixed deal of the cards, there may still be many possible betting (and
discarding) sequences, and thus many many runs.

In a message-passing system, a particular message may or may not be lost, so
again, even with fixed initial global state, there are many possible runs.

For each fixed deal of the cards, there may still be many possible betting (and
discarding) sequences, and thus many many runs.

In a message-passing system, a particular message may or may not be lost, so
again, even with fixed initial global state, there are many possible runs.

Notice how this definition abstracts our intuitive view of a system as a collection of
interacting agents.

Notice how this definition abstracts our intuitive view of a system as a collection of
interacting agents.

Knowledge in Multi-agent systems
IV

14

Our approach uses the same formal systems of great diver-
sity; a computer system and a poker game are modeled
similarly.

We will use the term system in two ways: as the „real life“
collection of interacting agents or as a set of runs. Our
intention should be clear from the context.

Knowledge in Multi-agent systems
IV

15

We proceed as follows:

tenvironmen for the states possible all ofset thebe let eL
niiLi , ... , 2 , 1,agent for states possible all ofset thebe =

 states global possible all ofset n1e LLL ×××= KG

. G
G

. GG

in states
 global of sequence with identified becan over run a Thus

 to timeofdomain thefromfunction a is rA overun

point. a as
 timeand run a of consisting) ,(pair a refer to We mrmr

Knowledge in Multi-agent systems
IV

16

).,(point at the state local s agent' is)(Thus,
,, pro)(and)(

definewe
 ,),(point in the state global theis),,,()(If

mrimr
n1ismrsmr

mrsssmr

i

iiee

n1e

K

K

===

=

A round takes place between two time points. We define
round m in run r to take place between time m - 1 and
time m .

It is often convenient to view an agent as performing an
action during a round.

A system R over G is a set of runs over G . We say that
(r, m) is a point in system R if r ε R .

Knowledge in Multi-agent systems
IV

17

The following simple example describes a scenario that we
call the bit-transmission problem, which should give one a
better feeling for some of the above definitions.

Example 1. Bit-transmition problem.

Imagine, we have two processes, say a sender S and a
receiver R, that communicate over a communication line.
The sender starts with one bit (either 0 or 1) that it wants to
communicate to the receiver.

Unfortunately the communication line is faulty, and it may
lose messages in either direction in any given round; i.e.
there is no guarantee that a message sent by either S or R
will be received.

Knowledge in Multi-agent systems
IV

18

For simplicity, we assume that a message is either received
or lost in the same round it is sent, or lost altogether.

Because of uncertainty regarding possible message loss, S
sends the bit to R in every round, until S receives a
message from R acknowledging receipt of the bit. We call
this message from R an ack message.

R starts sending the ack message in the round after it re-
ceives the bit.

Since in this example a message may be received in the same round it is sent, we
are implicitely assuming that rounds are long enough for a message so be sent
and delivered.

We are assuming that this type of message loss is the only possible faulty
behaviour in the system.

Since in this example a message may be received in the same round it is sent, we
are implicitely assuming that rounds are long enough for a message so be sent
and delivered.

We are assuming that this type of message loss is the only possible faulty
behaviour in the system.

Knowledge in Multi-agent systems
IV

19

To allow S to stop sending the bit, R continues to send
the ack repeatedly from then on.
This informal description gives what we call a protocol for
S and R : it is a specification what they do at each step.

The protocol dictates that S must continue sending the bit to R until S receives
the ack message; roughly speaking, this is because before it receives the ack
message, S does not know whether R received the bit.

On the other hand, R never knows for certain that S actually received its acknow-
ledgment. Note the usage of the word „know“ in the two previous sentences. This of
course is not an accident. We claim that this type of protocol is thouht in terms of
knowledge.

The protocol dictates that S must continue sending the bit to R until S receives
the ack message; roughly speaking, this is because before it receives the ack
message, S does not know whether R received the bit.

On the other hand, R never knows for certain that S actually received its acknow-
ledgment. Note the usage of the word „know“ in the two previous sentences. This of
course is not an accident. We claim that this type of protocol is thouht in terms of
knowledge.

Returning to the protocol, note that R does know perfectly well that S stops sending
messages after receiving an ack message. But even if R does not receive messag-
es from S for a while, form R‘s point of view this is not necessarily because S
received an ack message from R ; this could be because the messages that S has
sent were lost in the communication channel.

Returning to the protocol, note that R does know perfectly well that S stops sending
messages after receiving an ack message. But even if R does not receive messag-
es from S for a while, form R‘s point of view this is not necessarily because S
received an ack message from R ; this could be because the messages that S has
sent were lost in the communication channel.

Knowledge in Multi-agent systems
IV

20

For now, we focus on the protocol that we described, where R
continues to send ack messages in every round, and S stops
as soon as it receives one of them.

The situation that we have just described in formally can be
formalized as a system. To describe the set of runs that make up
this system, we must make a number of choices regarding how
to model the local states of S , R , and the environment.

We could have S send an ack-ack message - an acknowledgment to acknow-
ledgment - so that R could stop sending the acknowledgment once it receives an
ack-ack message from S. But this only pushes the problem up one level: S will not
be able to safely stop sending ack-ack messages, since S has no way of know-
ing that R has received an ack-ack message. We shall show later on that this
type of uncertainty is inherent in systems such as the one we have just described,
where communication is not guaranteed.

We could have S send an ack-ack message - an acknowledgment to acknow-
ledgment - so that R could stop sending the acknowledgment once it receives an
ack-ack message from S. But this only pushes the problem up one level: S will not
be able to safely stop sending ack-ack messages, since S has no way of know-
ing that R has received an ack-ack message. We shall show later on that this
type of uncertainty is inherent in systems such as the one we have just described,
where communication is not guaranteed.

Knowledge in Multi-agent systems
IV

21

It seems reasonable to assume that the value of the bit
should be part of S‘s local state, and it should be part of
R‘s local state as soon as R receives a message from S
with the value.

Should we include in S‘s state the number of times that S
has sent the bit or the number of times that S receives an
ack message from R ? Similarly should we include in R‘s
state the number of times R has sent the ack message or the
number of times R has received the bit from S ?

Perhaps we should include in the local state representation of
the protocol being used ?

Knowledge in Multi-agent systems
IV

22

Our choice is to have the local states of S and R include
very little information; essentially, just enough to allow us to
carry out our analysis.

On the other hand, as we shall see in Example 2 , it is useful to
have the environment‘s state record the events taking place in
the system.

Thus we take LS , the possible local states of S , to be {0, 1,
(0, ack), (1, ack)}, where intuitively, S‘s local state is k if
its initial bit is k and it has not received an ack message from
R , while S‘s local state is (k, ack) if its initial bit is k and it
has received an ack message from R , for k = 0, 1.

Knowledge in Multi-agent systems
IV

23

Similarly, LR = {λ, 0, 1} , where λ denotes the local state
where R has received no meassage from S , and k de-
notes the local state where R received the message k from
S , for k = 0, 1 .
The environment‘s local state is used to record the history of
events taking place in the system. At each round, either

a) S sends the bit to R and R does nothing,

b) S does nothing and R sends an ack to S , or

c) both S and R send messages.

We denote these three possibilities by

. . . (sendbit, Λ) , (Λ, sendack) , (sendbit, sendack)

respectively.

Knowledge in Multi-agent systems
IV

24

Thus, we let the environment‘s state be a sequence of elements
from the set

{(sendbit, Λ) , (Λ, sendack) , (sendbit, sendack)}.

Here the m-th member of the sequence describes the actions of
the sender and receiver in round m .

There are many possible runs in this system , but these runs must
satisfy certain constraints. Initially the system must start in a
global state where nothing has been recorded in the environ-
ment‘s state, neither S nor R has received any messages, and S
has an initial bit of either 0 or 1 .

Knowledge in Multi-agent systems
IV

25

Thus, the initial global state of every run in the system has
the form (<>, k, λ) , where <> is the empty sequence and k
is either 0 or 1 .

In addition, consecutive global states r(m) = (se , sS , sR) and
r(m + 1) = (s‘e , s‘S , s‘R) in a run r are related by the follow-
ing conditions:

• If sR = λ , then s‘S = sS , s‘e = se • (sendbit, Λ) where • is
the operation of concatenation, and s‘R = λ or s‘R = sS .

Before R receives a message, it sends no messages; as a result S receives no
message, so it continues to send the bit and its state does not change. R may or
may not receive the message sent by S in round (m + 1).

Before R receives a message, it sends no messages; as a result S receives no
message, so it continues to send the bit and its state does not change. R may or
may not receive the message sent by S in round (m + 1).

Knowledge in Multi-agent systems
IV

26

• If sS = sR = k , then s‘R = k , s‘e = se • (sendbit, sendack),
and either s‘S = k or s‘S = (k, ack) .

• If sS = (k, ack), then

a) s‘e = se • (Λ, sendack)

b) s‘S = sS

c) s‘R = sR

After R has received S‘s bit, it starts sending acknowledgments, and its state un-
dergoes no further changes. S continues to send the bit, and it may or may not
receive the acknowledgment sent by R in round m + 1 .

After R has received S‘s bit, it starts sending acknowledgments, and its state un-
dergoes no further changes. S continues to send the bit, and it may or may not
receive the acknowledgment sent by R in round m + 1 .

Once S has received R‘s acknowledgment, S stops sending the bit and R
continues to send acknowledgments. The local states of S and R do not cha nge
any more. In b) s’S contains k as the memory of the initial bit, its stopping to send
it is not expressed, since we have not defined the corresponding local state for s.

Once S has received R‘s acknowledgment, S stops sending the bit and R
continues to send acknowledgments. The local states of S and R do not cha nge
any more. In b) s’S contains k as the memory of the initial bit, its stopping to send
it is not expressed, since we have not defined the corresponding local state for s.

Knowledge in Multi-agent systems
IV

27

We take the system Rbt describing the bit-trasmission prob-
lem to consist of all the runs meeting the constraints just
described.

Example 1. shows how many choices have to be made in describing a system,
even in simple cases. The example also suggests that the process of describing
all the runs in a system of interest can be rather tedious. As we said before, gett-
ing a good representation of a system can be difficult. The process is far more of
an art than a science. We shall return to this point later on, when we shall extend
the framework to deal with protocols and programs. This will give us a relatively
straightforward way of describing systems in many applications of interest.

Example 1. shows how many choices have to be made in describing a system,
even in simple cases. The example also suggests that the process of describing
all the runs in a system of interest can be rather tedious. As we said before, gett-
ing a good representation of a system can be difficult. The process is far more of
an art than a science. We shall return to this point later on, when we shall extend
the framework to deal with protocols and programs. This will give us a relatively
straightforward way of describing systems in many applications of interest.

Knowledge in Multi-agent systems
IV

28

Incorporating Knowledge
We already have seen in our discussion of the bit-transmiss-
ion problem (Example 1) that we were making statements
such as „ R does not know for certain that S receved its
acknowledgment“.

A central thesis of this exposition is that we often want to
think of an agent‘s actions as depending on her knowledge.

Indeed, our framework has been designed so that knowledge can be incor-
porated in a straightforward way. The basic idea is that a statement such as
„R does not know the statement A “ means that, as far as R is concerned,
the system could be at a point where A does not hold. The way to capture
that is closely related to the notion of possible worlds in Kripke structures.

We think of R´s knowledge as being determined by its local state, so that R
cannot distiguish two points of the system in which it has the same local state,
and it can distinguish points in which its local state differs.

Indeed, our framework has been designed so that knowledge can be incor-
porated in a straightforward way. The basic idea is that a statement such as
„R does not know the statement A “ means that, as far as R is concerned,
the system could be at a point where A does not hold. The way to capture
that is closely related to the notion of possible worlds in Kripke structures.

We think of R´s knowledge as being determined by its local state, so that R
cannot distiguish two points of the system in which it has the same local state,
and it can distinguish points in which its local state differs.

Knowledge in Multi-agent systems
IV

29

As we shall see, a system can be viewed as a Kripke structure
except that we have no function π telling us how to assign
truth to the primitive propositions from the set Φ of the lang-
uage of formulas.

We now formalize these ideas.

An interpreted system I consists of a pair (R,π) , where R
is a system over a set G of global states and π is an interpre-
tation for the propositions in Φ over G , which assigns truth

In the terminology of general structures, a system can be viewed as a frame. To view
a system as a Kripke structure, we assume that we have a set Φ of primitive
propositions, which we can think of as describing basic facts about the system. In
the context of distributed systems, these might be such as „the value of the variable
x is 0 “, „ process 1‘s initial input was 17 “, „ process 3 sends the message µ in
round 5 of this run “, or „ the system is deadlocked “. For simplicity, we are assuming
that the system can be described adequately using propositional logic, however, the
extension of the framework to use the first-order logic is not difficult.

In the terminology of general structures, a system can be viewed as a frame. To view
a system as a Kripke structure, we assume that we have a set Φ of primitive
propositions, which we can think of as describing basic facts about the system. In
the context of distributed systems, these might be such as „the value of the variable
x is 0 “, „ process 1‘s initial input was 17 “, „ process 3 sends the message µ in
round 5 of this run “, or „ the system is deadlocked “. For simplicity, we are assuming
that the system can be described adequately using propositional logic, however, the
extension of the framework to use the first-order logic is not difficult.

Knowledge in Multi-agent systems
IV

30

values to the primitive propositions at the global states. Thus,
for every p in Φ and state s in G , we have a boolean value
π(s)(p) in {true, false}.

We refer to the points and states of the system R as points and
states, respectively, of the interpreted system I . That is, we say
that the point (r, m) is in the interpreted system I = (R,π) if
r ε R , and similarly, we say that I is a system over state space
G if R is.

Note that Φ and π are not intrinsic to the system R. They constitute additional
structure on top of R that we, as outside observers, add for our convenience, to
help us analyze or understand the system better.

Note that Φ and π are not intrinsic to the system R. They constitute additional
structure on top of R that we, as outside observers, add for our convenience, to
help us analyze or understand the system better.

Knowledge in Multi-agent systems
IV

31

Of course π induces also an interpretation over the points of
R ; simply take π(r, m) to be π(r(m)). We refer to the points
and states of the system R as points and states, respectively,
of the interpreted system I .

To define knowledge in interpreted system, we associate with
an interpreted system I = (R,π) a Kripke structure . .
. MI = (S, π, K1 , ... , Kn)
in a strightforward way: We simply take S to consist of the
points in I , and take K1 , ... , Kn to be some binary relations
on S .

Note that there is no possibility relation for the environment because usually we are
not interested what the environment knows

Note that there is no possibility relation for the environment because usually we are
not interested what the environment knows

Knowledge in Multi-agent systems
IV

32

For the possibility relation Ki , we choose a specific relation
defined as follows: if s = (s1 , ... , sn) and s’ = (s’1 , ... , s’n)
are two global states in R , then we say that s and s’ are
indistinguishable to agent i , and write s ~i s’ if i has the
same state in both s and s’, i.e., if si = si’ .

We can extend the indistinguishability relation ~i to points:
we say that two points (r, m) and (r’, m’) are indistinguish-
able to i, and write (r, m) ~i (r’, m’) if r(m) ~i r’(m’) (or
equivalently if ri(m) = r’i(m’)).

Knowledge in Multi-agent systems
IV

33

Clearly ~i is an equivalence relation on points. When we
speak of knowledge in interpreted systems, we assume that
the Ki relation in MI is defined by ~i .

Intuitively, agent i considers a state s’ possible in a state s
if s and s’ are indistinguishable for agent i . Thus, the
agents’ knowledge is completely determined by their local
states.

We shall see many examples where tihis notion of knowledge is useful for
analyzing multi-agent systems. However, there are certain applications for which
the externaly knowledge is inappropriate.

For example, we shall soon consider an example involving knowledge bases,
where it may be more appropriate to consider knowledge base’s beliefs , rather
than its kowledge. As we shall see, by using a slightly different Ki relation instead
of ~i , we do get a reasonable notion of belief.

We shall see many examples where tihis notion of knowledge is useful for
analyzing multi-agent systems. However, there are certain applications for which
the externaly knowledge is inappropriate.

For example, we shall soon consider an example involving knowledge bases,
where it may be more appropriate to consider knowledge base’s beliefs , rather
than its kowledge. As we shall see, by using a slightly different Ki relation instead
of ~i , we do get a reasonable notion of belief.

Knowledge in Multi-agent systems
IV

34

By abuse of notation, we shall denote Ln(Φ) the set of
formulas obtained the set of primitive propositions in Φ ,
by closing it under propositional connectives, and the
modal operators K1 , ... , Kn . Usually we omit Φ when it is
clear from the context, writing just Ln .

Similarly, we denote by Ln
C , Ln

D , and Ln
CD the languages

that result from Ln by adding the modal operators for
common knowledge, distributed knowledge and operators
for both common and distributed knowledge.

Knowledge in Multi-agent systems
IV

35

We can now define what it means for a formula A ε Ln
CD

to be true at a point (r, m) in an interpreted system I by
applying the definitions for the ordinary Kripke structure M
to the related Kripke structure MI .

Thus, we say that (I, r, m) |= A iff (MI , s) |= A ,
where s = (r, m).
For example,

(I, r, m) |= p (for p ε Φ) iff π(r, m)(p) = true

(I, r, m) |= Ki A iff for all (r’ m’) ~i (r, m), we have
. . (I, r’, m’) |= A
The definitions of truth for formulas involving common and
distributed knowledge are left as an excercise.

Knowledge in Multi-agent systems
IV

36

Since π is a function on global states, the truth of a primit-
ive proposition q at a point (r,m) depends only on the
global state r(m) .
This seems like a natural assumption. The global state is
meant to capture everything relevant about the current
situation. Quite often, in fact, the truth of a primitive
proposition q of interest depends, not on the whole global
state, but only on the component of some particular agent.

For example, the truth of a statement such as “process 2
received process 1’s message” might depend only on pro-
cess 2’s state.

Knowledge in Multi-agent systems
IV

37

In that case, we expect π to respect the locality of q , that
is , if s and s’ are two global states and s ~i s’ , then
π(s)(q) = π(s’)(q) .

We shall concentrate only on such statements that are related
to one run in the system in particular.

Locality is one natural assumption in many applications.
However, there are statements that may depend on more than
one global state and the number of states involved cannot be
estimated in advance.

Knowledge in Multi-agent systems
IV

38

Motivation. Consider, for example, a statement such as

“eventually (at some later point in the run) the variable x is
set to 5”. (1)

Statements that depend on more than just one state.

Indeed, although such statements can depend on global
states, we cannot express them by any formula in our
language.

Obviously, there could exists two points (r,m) and (r’,m’)
with the same global state, such that the statement (1) is true
at (r,m) and false at (r’,m’). Thus, such a (temporal)
statement cannot be represented by a primitive proposition
from Φ in our framework.

Knowledge in Multi-agent systems
IV

39

The following fact is more or less obvious.

Proposition 1.
For every formula A ε LCD , if the points (r,m) and (r’,m’)
have the same global state r (m) = r’(m’), we have
. (I,r,m) |= A iff (I,r’,m’) |= A

While we could deal with this problem by allowing the truth of primitive propositions,
i.e. the truth function π to depend on the local point, and not just the the global
state, the more acceptable way to express such temporal statements is to adda
modal operators for time into the language. We return to this problem in the next
paragraph. Now, we shall continue with the semantics of interpreted systems.

While we could deal with this problem by allowing the truth of primitive propositions,
i.e. the truth function π to depend on the local point, and not just the the global
state, the more acceptable way to express such temporal statements is to adda
modal operators for time into the language. We return to this problem in the next
paragraph. Now, we shall continue with the semantics of interpreted systems.

Definition. (Formulas valid in interpreted systems)

We say that a formula A is valid in the intepreted system I

Knowledge in Multi-agent systems
IV

40

(i) We say that a formula A is valid in the intepreted system
I and write I |= A , if (I,r,m) |= A holds for all points
(r,m) in I .

(ii) For a class C of interpreted systems, we say that a
formula A is valid in C , and write C |= A , if A is valid in
all interpreted systems in the class C .

Definition. (Formulas valid in interpreted systems)

Knowledge in Multi-agent systems
IV

41

Incorporating Time

Motivation.
Example 1 has shown that our language is not expressive enough to
handle conveniently the full complexity of even simple situations. For
example, we might want to make statements like “the receiver event-
ually knows the sender’s initial bit”. We have already observed that we
cannot express such temporal statements in our language.

To be able to make temporal statements, we extend our lang-
uage by adding temporal operators, which are new modal
operators for talking about time. From the variety of such
operators, we focus here on four of them.

Knowledge in Multi-agent systems
IV

42

The operators, we use to extend our language are

• � (“always”), its dual,

• <> (“eventually”),

• O (“next time”) and

• U (“until”)

Intuitively, �A is true if A is true now and at all later points; <>A is true if A
is true at some point in the future; OA is true if A is true at the next step; and
A U B is true if A is true until B is true.

Intuitively, �A is true if A is true now and at all later points; <>A is true if A
is true at some point in the future; OA is true if A is true at the next step; and
A U B is true if A is true until B is true.

More formally, in interpretated systems, we have

(I, r, m) |= �A iff (I, r, m’) |= A for all m’ > m,

(I, r, m) |= <>A iff (I, r, m’) |= A for some m’ > m ,

Knowledge in Multi-agent systems
IV

43

(I, r, m) |= OA iff (I, r, m+1) |= A, and

(I, r, m) |= A U B iff (I, r, m’) |= B for some m’ > m and
. (I, r, m”) |= A for all m”, m < m”< m’

Note that our interpretation of OA as “A holds at the next step” makes sense in
discrete time (which is our case). All the other temporal operators make perfect
sense even for continuous time.

Note that our interpretation of OA as “A holds at the next step” makes sense in
discrete time (which is our case). All the other temporal operators make perfect
sense even for continuous time.

It is easy to show that
. �A <-> ¬<>¬A . . .
. <>A <-> ¬�¬A .

. <>A <-> true U A
Thus, we can take O and U as basic operators, and define
� and <> in terms of U .

Knowledge in Multi-agent systems
IV

44

As we have proved earlier, if two points (r, m) and (r’, m’)
in an interpreted system I have the same global state, then
they agree on all formulas in Ln

CD.

Once, we add time to the language, it is no more true. For
example, it is easy to construct an interpreted system I and
two points (r, m) and (r’, m’) in I such that r(m) = r’(m’),
but (I, r, m) |= <>p and (I, r’, m’) |= ¬<>p .

To do that, construct an interpreted system I, with two runs r and r’ , such that
r(0) = r’ (0) and r(1) is different from r’ (1). Define the truth function π in such a
way that π(r, 1)(p) = true and π(r’, m)(p) = false for all m > 1 . In fact, both runs
can have the same lengt 2 .

To do that, construct an interpreted system I, with two runs r and r’ , such that
r(0) = r’ (0) and r(1) is different from r’ (1). Define the truth function π in such a
way that π(r, 1)(p) = true and π(r’, m)(p) = false for all m > 1 . In fact, both runs
can have the same lengt 2 .

Knowledge in Multi-agent systems
IV

45

In general, temporal operators are used for reasoning about
events that happen along a single run.

For example, in the bit-transmission problem, the formula �(recbit -> <>recack)
says that if at some point along a run the receiver receives the bit sent by the
sender, then at some point in the future the sender will receive the acknowledment
sent by the receiver.

For example, in the bit-transmission problem, the formula �(recbit -> <>recack)
says that if at some point along a run the receiver receives the bit sent by the
sender, then at some point in the future the sender will receive the acknowledment
sent by the receiver.

By combining temporal and knowledge operators, we can
make assertions about the evolution of knowledge in the
system.

For example, in the context of the bit-transmission problem we may want to make
statements such as “the receiver eventually knows the sender’s initial bit”. This
statement can now be expressed by the formula

<>(KR(bit = 0) v KR(bit = 1))

For example, in the context of the bit-transmission problem we may want to make
statements such as “the receiver eventually knows the sender’s initial bit”. This
statement can now be expressed by the formula

<>(KR(bit = 0) v KR(bit = 1))

Knowledge in Multi-agent systems
IV

46

Once we have temporal operators, there are a number of
important notions that we can express. We have already seen
the handiness of � and <>.

We mention two other useful notions obtained by combining �
and <>:

• The formula �<>A is true if A occurs infinitely often; i.e.
(I, r, m) |= �<>A exactly if the set {m’ | (I, r, m’) |= A} is
infinite.

• The formula <>�A is true if A is true almost everywhere;
i.e., (I, r, m) |= <>�A if for some m’ and all m” > m’ , we
have (I, r, m”) |= A .

Knowledge in Multi-agent systems
IV

47

The temporal operators that we have defined can talk about events that happen
only in the present or future, not events that happened in the past. It is possible to
inroduce temporal operators for reasoning about the past, for example, an analogue
of <> saying “at some time in the past”. We have not done so, while the above
introduced temporal operators suffice for many applications and necessity to reason
about the past occurs very rarely.

The temporal operators that we have defined can talk about events that happen
only in the present or future, not events that happened in the past. It is possible to
inroduce temporal operators for reasoning about the past, for example, an analogue
of <> saying “at some time in the past”. We have not done so, while the above
introduced temporal operators suffice for many applications and necessity to reason
about the past occurs very rarely.

