
Knowledge in Multi-agent systems 
IV

1
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It is hard enough to reason about the behaviour of one agent. 
Things get much worse if we have a system of interacting 
agents.

Consider, for example the muddy children puzzle. If we attempt to model the 
system in full detail, we would have to include all that happend to each of the 
children thoughout their lives, a detailed description of their visual and auditory 
systems and how they operate, details of the whether they can reason logically, 
etc. etc.  The list is potentially endless. All of these factors could, in principle, 
influence the behaviour of the children.

Consider, for example the muddy children puzzle. If we attempt to model the 
system in full detail, we would have to include all that happend to each of the 
children thoughout their lives, a detailed description of their visual and auditory 
systems and how they operate, details of the whether they can reason logically, 
etc. etc.  The list is potentially endless. All of these factors could, in principle, 
influence the behaviour of the children.
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first we focus attention on only a few details, and  hope 
that these cover everything that is relevant to our analysis.

• second we try to find good ways to think about a situation 
in order to minimize the complexity.

We want to show that reasoning about systems in terms of 
knowledge can be very helpful.

To do that, we need a formal model of multi-agent systems.

To cope with the complexity,
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One of a key assumptions we make is that if we look at the 
system at any point in time, each agent is in some state. 

We refer to this as the agent‘s local state.

We assume that an agent‘s local state encapsulates all the 
information to which the agent has access.

In our abstract framework, we do not make any additional 
assumptions about the state.

In case of the muddy children, the state of a child might encode what the child has 
seen and heard  i.e. which of the other children have muddy foreheads and which do 
not, the father‘s initial statement, and the responses of each of the children to the 
father‘s questions so far. 

In case of the muddy children, the state of a child might encode what the child has 
seen and heard  i.e. which of the other children have muddy foreheads and which do 
not, the father‘s initial statement, and the responses of each of the children to the 
father‘s questions so far. 
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As the example of a poker game already indicates, represen-
ting the states of the agents can be highly  nontrivial.

The first problem is deciding what to include in the state.

Modelling a poker game a player‘s state might consist of the cards he currently 
holds, the bets made by the other players, any other cards he has seen, and any  
information he may have about the strategies of the othe player‘s. [e.g. Bob may 
know that Alice likes to bluff, while Charlie tends to bet conservatively.]                                  

Modelling a poker game a player‘s state might consist of the cards he currently 
holds, the bets made by the other players, any other cards he has seen, and any  
information he may have about the strategies of the othe player‘s. [e.g. Bob may 
know that Alice likes to bluff, while Charlie tends to bet conservatively.]                                   

Certainly if the system is made up of interacting people, then it becomes a  rather 
difficult problem to decide where to draw the line. In the poker example, should we 
include the fact that Bob had an unhappy childhood as a part of the state? If so, how 
do we capture this?

Certainly if the system is made up of interacting people, then it becomes a  rather 
difficult problem to decide where to draw the line. In the poker example, should we 
include the fact that Bob had an unhappy childhood as a part of the state? If so, how 
do we capture this?
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Once we have solved the problem of what we include in the 
state, we then have to decide how to represent what we do 
include.

If we decide that Bob‘s childhood is relevant, how do we describe the relevant 
features of his childhood in a reasonable way? In our abstract framework we 
sidestep these difficulties, and simply assume that at each point in time , each 
agent in the system is in some unique state. Of course, we are confronted with 
these difficulties when dealing with concrete examples.

These problems tend to be somewhat easier to solve when dealing with processes 
in a distributed system rather than with people, but as we shall see later on, even in 
tnis simpler setting there can be difficult choices to make.

If we decide that Bob‘s childhood is relevant, how do we describe the relevant 
features of his childhood in a reasonable way? In our abstract framework we 
sidestep these difficulties, and simply assume that at each point in time , each 
agent in the system is in some unique state. Of course, we are confronted with 
these difficulties when dealing with concrete examples.

These problems tend to be somewhat easier to solve when dealing with processes 
in a distributed system rather than with people, but as we shall see later on, even in 
tnis simpler setting there can be difficult choices to make.
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Once we think in terms of each agent having a state, it is but 
a short step to think of the whole system as being in some 
state.

If we are analyzing a message-passing system where 
processes send messages back and forth along commun-
icaton lines, we might want to know about messages that 
are in transit or about whether a communication line is up 
or down.

The first try might be to make the system‘s state to be a tuple of the form           
(s1 ,s2 , … , sn)   where si , is the agent  i‘ s  state. But, in general, more than 
just the local states of the agents may be relevant when analyzing a system.

The first try might be to make the system‘s state to be a tuple of the form           
(s1 ,s2 , … , sn)   where si , is the agent  i‘ s  state. But, in general, more than 
just the local states of the agents may be relevant when analyzing a system.

If we are considering a system of sensors observing some terrain, we might 
need to include features of the terrain in a description of the state of a system.

If we are considering a system of sensors observing some terrain, we might 
need to include features of the terrain in a description of the state of a system.
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Motivated by these observations, we conceptually divide a 
system into two components: the agents and the environment, 
where we view the environment as „everything else to be 
relevant“.

We define a global state of a system with n agents to be an 
(n + 1)-tuple of the form  (se , s2 , … , sn) , where se is the state 
of the environment and  si  is the local state of agent  i .

In many ways the environment can be viewed as just another agent, though it typ-
ically plays a special role in our analyses.

In many ways the environment can be viewed as just another agent, though it typ-
ically plays a special role in our analyses.

A given system can be modeled in many ways. How we divide the system into 
agents and environment depends on the system  being analyzed.

In a message-passing system, we can view a message buffer, which stores 
messages not yet delivered, either as a process (i.e., an agent), and have its state 
encode which messages have been sent and not yet delivered, or as a part of the 
environment. 

A given system can be modeled in many ways. How we divide the system into 
agents and environment depends on the system  being analyzed.

In a message-passing system, we can view a message buffer, which stores 
messages not yet delivered, either as a process (i.e., an agent), and have its state 
encode which messages have been sent and not yet delivered, or as a part of the 
environment. 
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A global state describes the system at a given point of time. But 
a system is not a static entity; it constantly changes. 

• Since we are mainly interested in how systes change over time, 
we need to build time into our model.

• We define a  run to be a function from time to global states.

Similarly, we can view a communication line as an agent whose local state might 
describe (among other things) whether or not it is up, or we can have the status of the 
communication lines be a part of the environment.

Similarly, we can view a communication line as an agent whose local state might 
describe (among other things) whether or not it is up, or we can have the status of the 
communication lines be a part of the environment.

Intuitively, a run is a complete description how the system‘s global state evolves over 
time. 

Intuitively, a run is a complete description how the system‘s global state evolves over 
time. 
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We take time to range over the natural numbers. Thus   r(0)  
describes the initial global state of the system in a possible 
execution   r , the next global state being   r(1) , and so on. 

Although we typically think of time as being continuous, 
assuming that time is discrete is quite natural. Computers 
proceed in discrete time steps, after all.

Our assumption that time ranges over the natural numbers seems to be quite a 
strong one.  In particular it means that the steps are discrete and that time is 
infinite. We have made this choice mainly for definitness, but also because it 
seems appropriate for many applicationas.

Most of our results and comments hold with little or no change if we assume 
instead that time is continuous (and ranges over, say, the real numbers or the 
non negative real numbers).

Our assumption that time ranges over the natural numbers seems to be quite a 
strong one.  In particular it means that the steps are discrete and that time is 
infinite. We have made this choice mainly for definitness, but also because it 
seems appropriate for many applicationas.

Most of our results and comments hold with little or no change if we assume 
instead that time is continuous (and ranges over, say, the real numbers or the 
non negative real numbers).
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We assume that time is measured on some clock external to the 
system. We do not assume that agents in the system necessarily 
have access to this clock; at time  m measured on the external 
clock, agent  i need not know it is time  m. If an agent does know 
the time, then this information would be encoded in his local 
state.

Allowing time to be infinite makes it easier to model situations where there is no a priori
time bound on how long the system will run. An example of this phenomenon is provided 
by the Muddy children puzzle. It is not clear how many steps it will take  the childrens to 
figure out whether they have mud on their forehead;  indeed, in some variants of the 
puzzle, they never figure it out. 

And if we do want to model a system that runs for a bounded number of steps, we can 
typically  capture this by assuming that the system remains in the same global state 
after it has stopped.

Allowing time to be infinite makes it easier to model situations where there is no a priori
time bound on how long the system will run. An example of this phenomenon is provided 
by the Muddy children puzzle. It is not clear how many steps it will take  the childrens to 
figure out whether they have mud on their forehead;  indeed, in some variants of the 
puzzle, they never figure it out. 

And if we do want to model a system that runs for a bounded number of steps, we can 
typically  capture this by assuming that the system remains in the same global state 
after it has stopped.
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This external clock need not measure „real time“.

A system can have many possible runs, since the system‘s  
global state can evolve in many possible ways: there are a 
number of possible initial states and many things that could 
happen from each initial global state.

For example, in the case of Muddy children puzzle, there could be one „tick“of the 
clock for every round by the puzzle and every round of the answers to the father‘s 
question.

If we are analyzing a poker game, there could be on tick of the clock in whatever 
each time someone bets or discards. In general, we model the external clock in 
whatever  way makes it easiest for us to analyze the system.

For example, in the case of Muddy children puzzle, there could be one „tick“of the 
clock for every round by the puzzle and every round of the answers to the father‘s 
question.

If we are analyzing a poker game, there could be on tick of the clock in whatever 
each time someone bets or discards. In general, we model the external clock in 
whatever  way makes it easiest for us to analyze the system.

For example, in poker game, the initial global state could describe the possible 
deals of the hand, with player  i‘s  local state  si   describing the cards held initially  
by player  i .

For example, in poker game, the initial global state could describe the possible 
deals of the hand, with player  i‘s  local state  si   describing the cards held initially  
by player  i .
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To capture this, we formally define a system  to be a 
nonempty set of runs. 

Instead of trying to model to describe the system directly, 
our definition models the possible  behaviours  of the 
system. By the requirement that the set of runs be nonempty 
we are modelling that the system has  some behaviours.

For each fixed deal  of the cards, there may still be many possible betting (and 
discarding) sequences, and thus many many runs.  

In a message-passing system, a particular message may or may not be lost, so 
again, even with fixed initial global state, there are many possible runs.

For each fixed deal  of the cards, there may still be many possible betting (and 
discarding) sequences, and thus many many runs.  

In a message-passing system, a particular message may or may not be lost, so 
again, even with fixed initial global state, there are many possible runs.

Notice how this definition abstracts our intuitive view of a system as a collection of 
interacting agents.

Notice how this definition abstracts our intuitive view of a system as a collection of 
interacting agents.
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Our approach uses the same formal systems of great diver-
sity; a computer system and a poker game are modeled 
similarly. 

We will use the term  system in two ways: as the „real life“
collection of interacting agents or as a set of runs. Our 
intention should be clear from the context.
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We proceed as follows:
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A  round takes place between two time points.  We define 
round   m in run  r to take place between time   m - 1  and 
time  m .

It is often convenient to view an agent as performing an 
action during a round.

A system R  over  G  is a set of runs over  G . We say that  
(r, m)  is a point in system   R if  r  ε R .
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The following simple example describes a scenario that we 
call the  bit-transmission problem, which should give one a 
better feeling for some of the above definitions.

Example 1. Bit-transmition problem.

Imagine, we have two processes, say a  sender  S and a  
receiver  R, that communicate over a communication line. 
The sender starts with one bit (either  0  or  1) that it wants to 
communicate to the receiver.

Unfortunately the communication line is faulty, and it may 
lose messages in either direction in any given round;  i.e. 
there is no guarantee that a message sent by either   S or R  
will be received.
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For simplicity, we assume that a message is either received 
or lost in the same round it is sent, or lost altogether.

Because of uncertainty regarding possible message loss,  S
sends the bit to  R in every round, until  S receives a 
message from  R acknowledging receipt of the bit. We call 
this message from  R an  ack message.

R starts sending the  ack message in the round after it re-
ceives the bit.                  

Since in this example a message may be received in the same round it is sent, we 
are implicitely assuming that rounds are long enough for a message so be sent 
and delivered.

We are assuming that this type of message loss is the only possible faulty 
behaviour in the system.

Since in this example a message may be received in the same round it is sent, we 
are implicitely assuming that rounds are long enough for a message so be sent 
and delivered.

We are assuming that this type of message loss is the only possible faulty 
behaviour in the system.
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To allow  S  to stop sending the bit,  R continues to send 
the  ack repeatedly from then on.
This informal description gives what we call a  protocol for  
S and  R : it is a specification what they do at each step.

The protocol dictates that  S must continue sending the bit to  R  until  S receives 
the  ack message; roughly speaking, this is because before it receives the  ack
message,  S does  not know whether  R received the bit.

On the other hand,  R never knows for certain that  S actually received its acknow-
ledgment. Note the usage of the word  „know“ in the two previous sentences. This of 
course is not an accident. We claim that this type of protocol is thouht in terms of 
knowledge.

The protocol dictates that  S must continue sending the bit to  R  until  S receives 
the  ack message; roughly speaking, this is because before it receives the  ack
message,  S does  not know whether  R received the bit.

On the other hand,  R never knows for certain that  S actually received its acknow-
ledgment. Note the usage of the word  „know“ in the two previous sentences. This of 
course is not an accident. We claim that this type of protocol is thouht in terms of 
knowledge.

Returning to the protocol, note that  R  does know perfectly well that  S stops sending 
messages after receiving an  ack  message. But even if  R does not receive messag-
es from  S for a while, form  R‘s  point of view this is not necessarily because  S  
received an  ack message from  R ; this could be because the messages that  S has 
sent were lost in the communication channel.

Returning to the protocol, note that  R  does know perfectly well that  S stops sending 
messages after receiving an  ack  message. But even if  R does not receive messag-
es from  S for a while, form  R‘s  point of view this is not necessarily because  S  
received an  ack message from  R ; this could be because the messages that  S has 
sent were lost in the communication channel.



Knowledge in Multi-agent systems 
IV

20

For now, we focus on the protocol that we described, where  R
continues to send  ack messages in every round, and   S stops 
as soon as it receives one of them.

The situation that we have just described in formally can be 
formalized as a system. To describe the set of runs that make up
this system, we must make a number of choices regarding how 
to model the local states of   S , R , and the environment.

We could have   S  send an  ack-ack  message - an acknowledgment to acknow-
ledgment  - so that   R  could stop sending the acknowledgment once it receives an 
ack-ack message from S. But this only pushes the problem up one level:  S  will not 
be able to safely stop sending   ack-ack messages, since   S  has no way of know-
ing that   R  has received an  ack-ack message. We shall show later on that this 
type of uncertainty is inherent in systems such as the one we have just described, 
where communication is not guaranteed.

We could have   S  send an  ack-ack  message - an acknowledgment to acknow-
ledgment  - so that   R  could stop sending the acknowledgment once it receives an 
ack-ack message from S. But this only pushes the problem up one level:  S  will not 
be able to safely stop sending   ack-ack messages, since   S  has no way of know-
ing that   R  has received an  ack-ack message. We shall show later on that this 
type of uncertainty is inherent in systems such as the one we have just described, 
where communication is not guaranteed.
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It seems reasonable to assume that the  value of the bit 
should be part of  S‘s local state, and it should be part of   
R‘s local state as soon as  R receives a message from  S  
with the value.

Should we include in  S‘s  state the number of times that  S  
has sent the bit or the number of times that   S receives an  
ack message from   R ?  Similarly should we include in  R‘s 
state the number of times  R has sent the  ack message or the 
number of times  R has received the bit from  S ?

Perhaps we should include in the local state representation of 
the protocol being used ?
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Our choice is to have the local states of  S  and  R include 
very little information; essentially, just enough to allow us to
carry out our analysis.

On the other hand, as we shall see in Example 2 , it is useful to 
have the environment‘s state record the events taking place in 
the system. 

Thus we take  LS , the possible local states of  S , to be {0, 1, 
(0, ack), (1, ack)}, where intuitively,  S‘s  local state is   k if 
its initial bit is  k and it has not received an  ack message from  
R , while  S‘s  local state is  (k, ack) if its initial bit is  k and it 
has received an  ack  message from  R , for  k = 0, 1.  
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Similarly,   LR  = {λ, 0, 1} , where  λ denotes the local state 
where  R has received no meassage from  S ,  and  k de-
notes the local state where  R received the message  k from  
S , for  k = 0, 1 . 
The environment‘s local state is used to record the history of 
events taking place in the system. At each round, either

a)  S sends the bit to  R and  R does nothing,

b)  S  does nothing and  R sends an  ack to  S , or

c)  both  S and  R send messages.

We denote these three possibilities by

. .   . (sendbit, Λ) , (Λ, sendack) , (sendbit, sendack)

respectively. 
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Thus, we let the environment‘s state be a sequence of elements 
from the set

{(sendbit, Λ) , (Λ, sendack) , (sendbit, sendack)}.

Here the  m-th member of the sequence describes the actions of 
the sender and receiver in  round  m .

There are many possible runs in this system , but these runs must 
satisfy certain constraints. Initially the system must start in a 
global state where nothing has been recorded in the environ-
ment‘s state, neither  S nor  R  has received any messages, and  S
has an initial  bit of either  0  or  1 .
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Thus, the initial global state of every run in the system has 
the form  (<>, k, λ) , where   <>  is the empty sequence and  k  
is either  0  or  1 .

In addition, consecutive global states  r(m) = (se , sS , sR)  and  
r(m + 1) = (s‘e , s‘S , s‘R)  in a run   r are related by the follow-
ing conditions:

• If  sR = λ , then  s‘S = sS , s‘e = se • (sendbit, Λ) where  • is 
the operation of concatenation, and  s‘R = λ or  s‘R = sS .

Before  R  receives a message, it sends no messages; as a result  S receives no 
message, so it continues to send the bit and its state does not change.  R may or 
may not receive the message sent by  S in round  (m + 1).

Before  R  receives a message, it sends no messages; as a result  S receives no 
message, so it continues to send the bit and its state does not change.  R may or 
may not receive the message sent by  S in round  (m + 1).
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• If   sS = sR = k , then  s‘R = k , s‘e = se • (sendbit, sendack), 
and either s‘S = k or s‘S = (k, ack) .

• If  sS = (k, ack), then 

a)  s‘e = se • (Λ, sendack) 

b)  s‘S = sS  

c)  s‘R = sR

After  R has received  S‘s  bit, it starts sending acknowledgments, and its state un-
dergoes no further changes. S  continues to send the bit,  and it may or may not 
receive the acknowledgment sent by  R in round  m + 1 .

After  R has received  S‘s  bit, it starts sending acknowledgments, and its state un-
dergoes no further changes. S  continues to send the bit,  and it may or may not 
receive the acknowledgment sent by  R in round  m + 1 .

Once  S has received  R‘s  acknowledgment,  S stops sending the bit and  R  
continues to send acknowledgments. The local states of  S and  R do not cha nge 
any more. In  b)  s’S  contains  k as the memory of the initial bit, its stopping to send 
it is not expressed, since we have not defined the corresponding local state for  s.

Once  S has received  R‘s  acknowledgment,  S stops sending the bit and  R  
continues to send acknowledgments. The local states of  S and  R do not cha nge 
any more. In  b)  s’S  contains  k as the memory of the initial bit, its stopping to send 
it is not expressed, since we have not defined the corresponding local state for  s.
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We take the system   Rbt describing the bit-trasmission prob-
lem to consist of all the runs meeting the constraints just 
described.

Example 1. shows how many choices have to be made in describing a system, 
even in simple cases. The example also suggests that the process of describing 
all the runs in a system of interest can be rather tedious. As we said before, gett-
ing a good representation of a system can be difficult.  The process is far more of 
an art than a science. We shall return to this point later on, when we shall extend 
the framework to deal with protocols and programs. This will give us a relatively 
straightforward way of describing  systems in many applications of interest.

Example 1. shows how many choices have to be made in describing a system, 
even in simple cases. The example also suggests that the process of describing 
all the runs in a system of interest can be rather tedious. As we said before, gett-
ing a good representation of a system can be difficult.  The process is far more of 
an art than a science. We shall return to this point later on, when we shall extend 
the framework to deal with protocols and programs. This will give us a relatively 
straightforward way of describing  systems in many applications of interest.
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Incorporating Knowledge
We already have seen in our discussion of the bit-transmiss-
ion problem  (Example 1) that we were making statements 
such as „ R  does not know for certain that  S  receved its 
acknowledgment“.

A central thesis of this exposition is that we often want to 
think of an agent‘s actions as depending on her knowledge.

Indeed, our framework has been designed so that knowledge can be incor-
porated in a straightforward way. The basic idea is that a statement such as  
„R does not know the statement  A “ means that, as far as  R is concerned, 
the system could be at a point where  A does not hold. The way to capture 
that is closely related to the notion of possible worlds in Kripke structures.

We think of  R´s knowledge as being determined by its local state, so that  R
cannot distiguish two points of the system in which it has the same local state, 
and it can distinguish points in which its local state differs. 

Indeed, our framework has been designed so that knowledge can be incor-
porated in a straightforward way. The basic idea is that a statement such as  
„R does not know the statement  A “ means that, as far as  R is concerned, 
the system could be at a point where  A does not hold. The way to capture 
that is closely related to the notion of possible worlds in Kripke structures.

We think of  R´s knowledge as being determined by its local state, so that  R
cannot distiguish two points of the system in which it has the same local state, 
and it can distinguish points in which its local state differs. 
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As we shall see, a system can be viewed as a Kripke structure 
except that we have no function  π telling us how to assign 
truth to the primitive propositions from the set   Φ of the lang-
uage of formulas.

We now formalize these ideas.

An interpreted system  I consists of a pair  (R,π ) , where  R
is a system over a set  G of global states and  π is an interpre-
tation for the propositions in  Φ over  G , which assigns truth

In the terminology of general structures, a system can be viewed as a frame. To view 
a system as a Kripke structure, we assume that we have a set  Φ of primitive 
propositions, which we can think of as describing basic facts about the system.  In 
the context of distributed systems, these might be such as  „the value of the variable  
x is  0 “,  „ process 1‘s  initial input was 17 “,  „ process 3 sends the message  µ in 
round 5 of this run “, or  „ the system is deadlocked “. For simplicity, we are assuming 
that the system can be described adequately using propositional logic, however, the 
extension of the framework to use the first-order logic is not difficult.

In the terminology of general structures, a system can be viewed as a frame. To view 
a system as a Kripke structure, we assume that we have a set  Φ of primitive 
propositions, which we can think of as describing basic facts about the system.  In 
the context of distributed systems, these might be such as  „the value of the variable  
x is  0 “,  „ process 1‘s  initial input was 17 “,  „ process 3 sends the message  µ in 
round 5 of this run “, or  „ the system is deadlocked “. For simplicity, we are assuming 
that the system can be described adequately using propositional logic, however, the 
extension of the framework to use the first-order logic is not difficult.
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values to the primitive propositions at the global states. Thus,
for every   p in  Φ and state  s  in  G , we have a boolean value  
π(s)(p)  in  {true, false}.

We refer to the points and states of the system  R as points and 
states, respectively, of the interpreted system  I . That is, we say 
that the point  (r, m)  is in the interpreted system  I = (R,π )  if   
r ε R , and similarly, we say that  I  is a system over state space 
G if  R is. 

Note that  Φ and   π are not intrinsic to the system R. They constitute additional  
structure on top of R that we, as outside observers, add for our convenience, to 
help us analyze or understand the system better.

Note that  Φ and   π are not intrinsic to the system R. They constitute additional  
structure on top of R that we, as outside observers, add for our convenience, to 
help us analyze or understand the system better.
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Of course  π induces also an interpretation over the points of    
R ;  simply take  π(r, m)  to be  π(r(m)).  We refer to the points 
and states of the system  R as points and states, respectively, 
of the interpreted system   I . 

To define knowledge in interpreted system, we associate with 
an interpreted system  I = (R,π )  a Kripke structure              . .               
.                                         MI = (S, π, K1 , ... , Kn)                                            
in a strightforward way: We simply take  S to consist of the 
points in  I , and take K1 , ... , Kn to be some binary relations 
on  S . 

Note that there is no possibility relation for the environment because usually we are 
not interested what the environment knows

Note that there is no possibility relation for the environment because usually we are 
not interested what the environment knows
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For the possibility relation  Ki , we choose a specific relation 
defined as follows: if  s = (s1 , ... , sn) and  s’ = (s’1 , ... , s’n )  
are two global states in  R , then we say that  s and  s’ are  
indistinguishable to agent  i , and write   s ~i s’ if  i has the 
same state in both  s and  s’, i.e., if   si = si’ .

We can extend the indistinguishability relation  ~i to points: 
we say that two points  (r, m)  and  (r’, m’) are indistinguish-
able to  i, and write   (r, m) ~i (r’, m’)  if   r(m) ~i r’(m’) (or 
equivalently if   ri(m) = r’i(m’)). 
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Clearly  ~i is an equivalence relation on points. When we 
speak of knowledge in interpreted systems, we assume that 
the  Ki  relation in   MI is defined by  ~i  .

Intuitively, agent  i considers a state  s’ possible in a state  s 
if  s  and  s’ are indistinguishable for agent  i . Thus, the 
agents’ knowledge is completely determined by their local 
states.

We shall see many examples where tihis notion of knowledge is useful for 
analyzing multi-agent systems. However, there are certain applications for which
the externaly knowledge is inappropriate.

For example, we shall soon consider an example involving knowledge bases, 
where it may be more appropriate to consider knowledge base’s   beliefs ,  rather 
than its kowledge. As we shall see, by using a slightly different   Ki relation instead 
of   ~i , we do get a reasonable notion of belief. 

We shall see many examples where tihis notion of knowledge is useful for 
analyzing multi-agent systems. However, there are certain applications for which
the externaly knowledge is inappropriate.

For example, we shall soon consider an example involving knowledge bases, 
where it may be more appropriate to consider knowledge base’s   beliefs ,  rather 
than its kowledge. As we shall see, by using a slightly different   Ki relation instead 
of   ~i , we do get a reasonable notion of belief. 
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By abuse of notation, we shall denote  Ln(Φ) the set of 
formulas obtained the set of primitive propositions in  Φ , 
by closing it under propositional connectives, and the 
modal operators  K1 , ... , Kn . Usually we omit Φ when it is 
clear from the context, writing just  Ln . 

Similarly, we denote by  Ln
C , Ln

D , and Ln
CD  the languages 

that result from  Ln by adding the modal operators for 
common knowledge, distributed knowledge and operators 
for both common and distributed knowledge.
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We can now define what it means for a formula  A  ε Ln
CD

to be true at a point  (r, m)  in an interpreted system  I by 
applying the definitions for the ordinary Kripke structure  M  
to the related Kripke structure  MI .

Thus, we say that   (I, r, m)  |=  A iff   (MI , s)  |=  A , 
where s = (r, m). 
For example, 

(I, r, m)  |=  p (for   p ε Φ )  iff  π(r, m)(p) = true

(I, r, m)  |= Ki A   iff  for all  (r’ m’) ~i (r, m), we have            
.     .                                                   (I, r’, m’) |= A
The definitions of truth for formulas involving common and 
distributed knowledge are left as an excercise.
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Since  π is a function on global states,  the truth of  a primit-
ive proposition  q at a point  (r,m)  depends only on the 
global state  r(m) .
This seems like a natural assumption. The global state is 
meant to capture everything relevant about the current 
situation. Quite often, in fact, the truth of a primitive 
proposition   q of interest depends, not on the whole global 
state, but only on the component of some particular agent. 

For example, the truth of a statement such as   “process 2  
received process 1’s  message” might depend only on pro-
cess 2’s state. 
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In that case, we expect  π to respect the  locality of  q , that 
is , if   s and  s’ are two global states and  s ~i s’ , then    
π(s)(q) =  π(s’)(q) . 

We shall concentrate only on such statements that are related 
to one run in the system in particular.

Locality is one natural assumption in many applications. 
However, there are statements that may depend on more than 
one global state and the number of states involved cannot be 
estimated in advance. 
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Motivation. Consider, for example, a statement such as 

“eventually (at some later point in the run) the variable  x is 
set to  5”.                                                               (1)

Statements that depend on more than just one state.

Indeed, although such statements can depend on global 
states, we cannot express them by any formula in our 
language.

Obviously, there could exists two points   (r,m)  and  (r’,m’) 
with the same global state, such that the statement (1) is true 
at  (r,m)  and false at   (r’,m’). Thus, such a (temporal) 
statement cannot be represented by a primitive proposition 
from  Φ in our framework.
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The following fact is more or less obvious.

Proposition 1.
For every formula   A ε LCD , if the points   (r,m)  and  (r’,m’)  
have the same global state  r (m) = r’(m’), we have                     
.                         (I,r,m) |=  A iff     (I,r’,m’) |=  A

While we could deal with this problem by allowing the truth of primitive propositions, 
i.e. the truth function π to depend on the local point, and not just the the global 
state, the more acceptable way to express such temporal statements is to adda 
modal operators for time into the language. We return to this problem in the next 
paragraph. Now, we shall continue with the semantics of interpreted systems.

While we could deal with this problem by allowing the truth of primitive propositions, 
i.e. the truth function π to depend on the local point, and not just the the global 
state, the more acceptable way to express such temporal statements is to adda 
modal operators for time into the language. We return to this problem in the next 
paragraph. Now, we shall continue with the semantics of interpreted systems.

Definition.  (Formulas valid in interpreted systems)

We say that a formula   A is valid  in the intepreted system   I  
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(i) We say that a formula   A is valid  in the intepreted system   
I and  write  I |=  A , if   (I,r,m) |=  A holds for all points  
(r,m) in  I . 

(ii) For a class   C   of interpreted systems, we say that a 
formula  A is valid in   C , and write   C |= A , if   A is valid in 
all interpreted systems in the class   C .

Definition.  (Formulas valid in interpreted systems)
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Incorporating Time

Motivation.
Example 1 has shown that our language is not expressive enough to 
handle conveniently the full complexity of even simple situations. For 
example, we might want to make statements like “the receiver event-
ually knows the sender’s initial bit”. We have already observed that we 
cannot express such temporal statements in our language.

To be able to make temporal statements, we extend our lang-
uage by adding temporal operators, which are new modal 
operators for talking about time. From the variety of such 
operators, we focus here on four of them.
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The operators, we use to extend our language are

• � (“always”), its dual,

• <> (“eventually”),

• O   (“next time”) and

• U (“until”)

Intuitively,  �A is true if   A is true now and at all later points;   <>A  is true if   A
is true at some point in the future;  OA is true if   A  is true at the next step; and  
A U B  is true if   A is true until  B is true.

Intuitively,  �A is true if   A is true now and at all later points;   <>A  is true if   A
is true at some point in the future;  OA is true if   A  is true at the next step; and  
A U B  is true if   A is true until  B is true.

More formally, in interpretated systems, we have

(I, r, m) |= �A    iff   (I, r, m’) |= A for all  m’ > m,

(I, r, m) |= <>A iff   (I, r, m’) |= A  for some  m’ > m ,



Knowledge in Multi-agent systems 
IV

43

(I, r, m) |= OA iff   (I, r, m+1) |= A, and

(I, r, m) |= A U B   iff   (I, r, m’) |= B for some  m’ > m  and          
.                                     (I, r, m”) |= A for all m”, m < m”< m’

Note that our interpretation of   OA as  “A holds at the next step” makes sense in 
discrete time (which is our case). All the other temporal operators make perfect 
sense even for continuous time.

Note that our interpretation of   OA as  “A holds at the next step” makes sense in 
discrete time (which is our case). All the other temporal operators make perfect 
sense even for continuous time.

It is easy to show that                                         
.                                                               �A <->  ¬<>¬A                                            . . .            
.                                                               <>A <-> ¬�¬A . 

.                                                               <>A <-> true U A                                           
Thus, we can take    O  and  U as basic operators, and define 
� and <>  in terms of    U .
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As we have proved earlier, if two points  (r, m) and (r’, m’) 
in an interpreted system  I have the same global state, then 
they agree on all formulas in  Ln

CD.

Once, we add time to the language, it is  no more true. For 
example, it is easy to construct an interpreted system  I and 
two points  (r, m)  and  (r’, m’)  in  I such that  r(m) = r’(m’),  
but   (I, r, m) |=  <>p  and  (I, r’, m’) |= ¬<>p .

To do that, construct an interpreted system I, with two runs  r  and  r’ , such that  
r(0) = r’ (0)  and  r(1)  is different from  r’ (1). Define the truth function  π in such a 
way that π(r, 1)(p) = true  and   π(r’, m)(p) = false  for all  m > 1 . In fact, both runs 
can have the same lengt  2 .

To do that, construct an interpreted system I, with two runs  r  and  r’ , such that  
r(0) = r’ (0)  and  r(1)  is different from  r’ (1). Define the truth function  π in such a 
way that π(r, 1)(p) = true  and   π(r’, m)(p) = false  for all  m > 1 . In fact, both runs 
can have the same lengt  2 .
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In general, temporal operators are used for reasoning about 
events that happen along a single run. 

For example, in the bit-transmission problem, the formula  �(recbit -> <>recack)  
says that if at some point along a run the receiver receives the bit sent by the 
sender, then at some point in the future the sender will receive the acknowledment 
sent by the receiver.

For example, in the bit-transmission problem, the formula  �(recbit -> <>recack)  
says that if at some point along a run the receiver receives the bit sent by the 
sender, then at some point in the future the sender will receive the acknowledment 
sent by the receiver.

By combining temporal and knowledge operators, we can 
make assertions about the evolution of knowledge in the 
system.

For example, in the context of the bit-transmission problem  we may want to make 
statements such as “the receiver eventually knows the sender’s initial bit”. This 
statement can now be expressed by the formula

<>(KR( bit = 0)  v  KR( bit = 1)) 

For example, in the context of the bit-transmission problem  we may want to make 
statements such as “the receiver eventually knows the sender’s initial bit”. This 
statement can now be expressed by the formula

<>(KR( bit = 0)  v  KR( bit = 1)) 
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Once we have temporal operators, there are a number of 
important notions that we can express. We have already seen 
the handiness of   �  and  <>. 

We mention two other useful notions obtained by combining �  
and  <>:

• The formula  �<>A is true if  A occurs infinitely often; i.e.  
(I, r, m) |=  �<>A exactly if the set  {m’ | (I, r, m’) |=  A}  is 
infinite.

• The formula  <>�A  is true if A  is true  almost everywhere;  
i.e.,  (I, r, m) |=  <>�A if for some m’ and all    m” > m’ , we 
have   (I, r, m”) |= A .
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The temporal operators that we have defined can talk about events that happen 
only in the present or future, not events that happened in the past. It is possible to 
inroduce temporal operators for reasoning about the past, for example, an analogue 
of  <>  saying “at some time in the past”. We have not done so, while the above 
introduced temporal operators suffice for many applications and necessity to reason 
about the past occurs very rarely.

The temporal operators that we have defined can talk about events that happen 
only in the present or future, not events that happened in the past. It is possible to 
inroduce temporal operators for reasoning about the past, for example, an analogue 
of  <>  saying “at some time in the past”. We have not done so, while the above 
introduced temporal operators suffice for many applications and necessity to reason 
about the past occurs very rarely.


